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Abstract

We consider a general QBD process as defining a FIFO queue and obtain the stationary
distribution of the sojourn time of a customer in that queue as a matrix exponential distri-
bution, which is identical to a phase-type distribution under a certain condition. Since QBD
processes include many queueing models where the arrival and service process are dependent,
these results form a substantial generalization of analogous results reported in the literature
for queues such as the PH/PH/c queue. We also discuss asymptotic properties of the sojourn
time distribution through its matrix exponential form.

Key wards: Quasi-birth-and-death process, queueing model, sojourn time distribution,
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1 Introduction

Let Z+ denote the set of nonnegative integers and consider a continuous-time stochastic process
{L(t)} on Z+, where sample paths of the stochastic process are assumed to be right continuous.
Then, letting L(t) be the number of customers in the system at time t, we can regard {L(t)} as
a queueing model with a single-class of customers. If L(t−) < L(t), then t is an arrival epoch
of customer; if L(t−) > L(t), then t is a departure epoch of customer. Here we assume that
if L(t−) = L(t), then any arrival or departure did not occur at time t. Let τA

n and τD
n be the

nth arrival and departure epochs, where we number them so that τA
0 ≤ 0, τA

1 > 0, τD
0 ≤ 0, and

τD
1 > 0. For s, t ≥ 0, let A(s, t) be the number of customers arriving in (s, t] and D(s, t) that of

customers departing in the same interval. They are given by

A(s, t) =
∞∑

n=1

1{s<τA
n ≤t}

(
L(τA

n ) − L(τA
n −)

)
,

D(s, t) =
∞∑

n=1

1{s<τD
n ≤t}

(
L(τD

n −) − L(τD
n )
)

,

where 1{·} is the indicator function. If L(τA
n )−L(τA

n −) = 1 for all n, then we say that the model
has a single-arrival process; otherwise it has a batch-arrival process. If L(τD

n −) − L(τD
n ) = 1

for all n, then we say that customers are served by single-service; otherwise they are served by
batch-service. In the discussion hereafter, we assume single-arrival and single-service, and refer
to the customer arriving at τA

n as customer n. In order to define sojourn times of customers
∗This manuscript is a draft version of “T. Ozawa, Sojourn Time Distributions in the Queue Defined by a

General QBD Process, Queueing Systems 53(4) (2006), 203-211.”
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in the system, we assume the first-in-first-out (FIFO) service discipline for the queueing model.
Then the departure time of customer n, denoted by τ̂D

n , and the sojourn time of the same
customer, denoted by Vn, are given by

τ̂D
n = inf{t > τA

n : D(τA
n , t) = L(τA

n )},

Vn = τ̂D
n − τA

n .

Note that we need more assumptions in order to define waiting times of customers for the
queueing model. Assuming the existence of the stationary version of Vn, we denote it by V .
Furthermore, we denote by L the stationary version of L(t).

Next, we consider another stochastic process {J(t)} on a state space S0 and assume that
two-dimensional stochastic process {(L(t), J(t))} is Markovian and time-homogeneous. If S0 is
a finite set and the transition rate of the process {(L(t), J(t))} does not depend on L(t) when
L(t) > 0, then {(L(t), J(t))} becomes a quasi-birth-and-death (QBD) process. Our aim is to
obtain the distribution of V for that QBD process. The simplest model among QBD processes
is a birth-and-death (BD) process, where S0 is a singleton and the queueing model defined by
the BD process is an M/M/1 queue. For the M/M/1 queue, the distribution of L is geometric
and that of V exponential. In the case where S0 is not a singleton, it is well known that the
distribution of L is given in a form of matrix-geometric [7, 10]. In this paper, we reveal that
in that case the distribution of V can be represented in a form of matrix-exponential and,
under a certain condition, the distribution is of phase-type. To our knowledge, it has not been
known before. Of course, the stationary waiting time distribution of a GI/N/1 queue is matrix
exponential [13, 14], but the class of queueing models defined by QBD processes includes not only
MAP/PH/1 queues but also Markovian queueing models in which arrival and service processes
are mutually dependent. One example of those Markovian queueing models is a MAP/MSP/1
queue [11], where MSP is the abbreviation of Markovian service process; the MSP is a model
similar to a Markovian arrival process (MAP) [7, 8], where arrivals are replaced with service
completions. The MSP can represent various queueing models such as vacation models, N -policy
models, and exceptional service models. We present some numerical examples for an N -policy
model and an exceptional service model represented as MAP/MSP/1 queues. We also discuss
asymptotic properties of the sojourn time distribution through the matrix exponential form.

The rest of the paper is organized as follows. In Sec. 2, the QBD process we consider is
described in detail. In Sec. 3, the stationary sojourn time distribution as well as its asymptotic
property is derived. In Sec. 4, we briefly explain a MAP/MSP/1 queue and give some numerical
examples. The paper is concluded with a remark for a bath-service model in Sec. 5.

2 QBD process

Consider a QBD process {Y (t)} = {(L(t), J(t))} on state space S = ({0} × JB) ∪ (N+ × JA),
where L(t) and J(t) are the level and phase at time t, JA = {1, 2, ..., sA} and JB = {1, 2, ..., sB}
are its phase sets, and N+ is the set of positive integers. Let the infinitesimal generator of the
QBD process be

Q =

⎛
⎜⎜⎜⎝

B(1) B(0)
B(2) A(1) A(0)

A(2) A(1) A(0)
. . . . . . . . .

⎞
⎟⎟⎟⎠ , (1)

where A(i), i = 1, 2, 3, are sA × sA matrices, B(0) an sB × sA matrix, B(1) an sB × sB matrix,
and B(2) an sA × sB matrix. We assume that the QBD process has the stationary distribution,
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and denote it by π = ( π(0) π(1) π(2) · · · ). Consider a period of time that begins when
the process is in state (l, j) for some l ∈ {1, 2, ...} and ends when it enters level l− 1 for the first
time. Let njj′ be the mean sojourn time of the process in state (l, j′) during the period and let
N be the sA × sA matrix defined by N = (njj′). Let R (= A(0)N) denote the rate matrix of
the QBD process, then the matrix geometric solution of the stationary distribution [7] is given
by

π(i) = π(1)Ri−1, i ≥ 2, (2)

where π(1) = π(0)B(0)N , and π(0) is given by the nonnegative vector that satisfies

π(0) {B(1) + B(0)NB(2)} = 0� and π(0)
{
e′ + B(0)N(I − R)−1e

}
= 1,

where I is the identity matrix, 0 a column vector of 0’s, and e as well as e′ a column vector of
1’s; the superscript � indicates the transpose.

Now we assume that the QBD process represents the behavior of a queue and regard the level
as the number of customers in the system. An event that the level goes up by one corresponds to
an arrival of customer and an event that the level goes down by one to a departure of customer.
Assuming the FIFO discipline for the queue, we can define sojourn times of customers in the
system in the same manner as in Section 1, without specifying service times of customers. Let
V denote the sojourn time of a tagged customer in steady state, and without loss of generality
we assume that the customer arrives at time 0. Then, V is equal to τD

L(0), which is the time
epoch at which the L(0)th departure (downward jump of the level) counted from time 0 occurs.

3 Stationary Sojourn Time Distribution

3.1 Preliminaries

3.1.1 The steady state distribution just after an arrival epoch

Let Ŷn = (L̂n, Ĵn) denote the state of the QBD process just after the nth arrival epoch, i.e.
Ŷn = Y (τA

n ), then {Ŷn} becomes a discrete-time GI/M-type Markov chain whose steady state
distribution, denoted by π̂ = ( π̂(1) π̂(2) · · · ), is given by the next theorem.

Theorem 1 π̂ is given by

π̂(1) = φ̂π(0)B(0),

π̂(l) = φ̂π(l − 1)A(0) = φ̂π(0)B(0) (NA(0))l−1 = π̂(1)R̂
l−1

, l ≥ 2,
(3)

where φ̂ is the normalizing constant given by

φ̂ =
{
π(0)B(0)(I − NA(0))−1e

}−1

and R̂ = NA(0) is the rate matrix of the discrete-time Markov chain {Ŷn}.

Proof. [π(0)B(0)]j is the rate that the QBD process enters state (1, j) just after an arrival epoch
in steady state and, for l ∈ {2, 3, ...}, [π(l− 1)A(0)]j the rate that it enters state (l, j) just after
an arrival epoch, where a rate means the expected number of events occurring in a unit time.
Hence, by a standard argument for Markov chains [5], normalizing those rates, we obtain the
stationary distribution of {Ŷn} represented by equation (3).

Next, we shall show that R̂ is the rate matrix of the discrete-time Markov chain {Ŷn}.
Suppose that, at the n1th arrival epoch, τA

n1
, the QBD process enters state (l, i) for some l ∈
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{1, 2, ...}, i.e. Ŷn1 = Y (τA
n1

) = (l, i), and consider the period of time that begins at τA
n1

and ends
when the QBD process enters level l − 1 for the first time. We denote by t′ the ending time
of the period and assume that just m customers arrive in (τA

n1
, t′). From the definition of the

period, we have L(t) ≥ l for all t ∈ (τA
n1

, t′), and this implies that L̂n1+k ≥ l + 1, k = 1, 2, ...,m.
After ending the period, L(t) becomes less than l and the level at the next arrival epoch is less
than l + 1, i.e. L̂n1+m+1 < l + 1. Hence [NA(0)]i,j is the expected number of visits of the chain
{Ŷn} into state (l+1, j) during the period of discrete-time that begins when the chain is in (l, i)
and ends when it reenters level l or enters one of the levels less than l for the first time. This
implies that R̂ = NA(0) is the rate matrix of {Ŷn}. �

We denote by η̂ the steady-state distribution of the phase just after an arrival epoch, which
is given by

η̂ =
∞∑
l=1

π̂(l) = π̂(1)(I − R̂)−1. (4)

3.1.2 The number of departures in (0, t]

Let O(t) = max{n : τD
n ≤ t} denote the number of departures (downward jumps of the level) in

(0, t] and P (k, t) the matrix whose (i, j) element is P (O(t) = k, J(t) = j |J(0) = i). Consider a
MAP with representation (C,D), where C = (cij) = A(0)+A(1) and D = (dij) = A(2). If the
level of the QBD process does not become zero during (0, t], the counting process {(O(t), J(t))}
can be represented by the MAP in stochastic sense. Hence, in that case, the matrices P (k, t), k =
0, 1, ..., satisfy differential equations

∂

∂t
P (0, t) = P (0, t)C = CP (0, t),

∂

∂t
P (k, t) = P (k, t)C + P (k − 1, t)D = CP (k, t) + DP (k − 1, t), k ≥ 1,

(5)

and the initial conditions P (0, 0) = I and P (k, 0) = O, k ≥ 1, where O is a matrix of 0’s.

3.2 Complementary distribution of V

In the following sections, we denote by ⊗ the Kronecker product operation and by ⊕ the Kro-
necker sum operation [4]. Let an s2

A × 1 vector ξ be defined by

ξ =

⎛
⎜⎜⎜⎝

e1

e2
...

esA

⎞
⎟⎟⎟⎠ ,

where ek denote the sA × 1 vector whose kth element is 1 and whose other elements are all 0
(i.e. kth unit vector). This ξ has the following property.

Lemma 1 For 1 × sA vectors a = (ai) and b = (bi), we have

(a ⊗ b) ξ = ab� = ba�.

Proof. This formula follows (a ⊗ b) ξ =
∑sA

i=1 aibei =
∑sA

i=1 aibi. �

The complementary distribution of V is given by the next theorem.
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Theorem 2 The complementary distribution of the sojourn time is given by

P (V > t) =
(
e� ⊗ η̂

)
exp

([
C� ⊗ I + D� ⊗ R̂

]
t
)

ξ, (6)

and the mean sojourn time by

E[V ] =
∫ ∞

0
P (V > t) dt =

(
e� ⊗ η̂

) (
−
[
C� ⊗ I + D� ⊗ R̂

])−1
ξ. (7)

Proof. If O(t) < L(0), the tagged customer arriving at time 0 is still in the system at time t.
Hence, in terms of π̂(k) and P (k, t), the complementary probability of V is represented as

P (V > t) =
∞∑

n=1

π̂(n)
n−1∑
k=0

P (k, t)e =
∞∑

n=1

π̂(1)R̂
n−1

n−1∑
k=0

P (k, t)e =
∞∑

k=0

η̂R̂
k
P (k, t)e. (8)

From Lemma 1, we therefore obtain

P (V > t) =
∞∑

k=0

(
e�P�(k, t) ⊗ η̂R̂

k
)

ξ =
(
e� ⊗ η̂

) ∞∑
k=0

(
P�(k, t) ⊗ R̂

k
)

ξ. (9)

In addition, from the differential equations (5), we have

∂

∂t
P�(0, t) ⊗ I =

(
P�(0, t) ⊗ I

) (
C� ⊗ I

)
,

∂

∂t
P�(k, t) ⊗ R̂

k
=
(

P�(k, t) ⊗ R̂
k
)(

C� ⊗ I
)

+
(

P�(k − 1, t) ⊗ R̂
k−1

)(
D� ⊗ R̂

)
, k ≥ 1.

(10)

Because the original QBD process is assumed to have a stationary distribution,
∑∞

k=0 R̂
k

=
I +

(
N
∑∞

k=1 Rk−1
)

A(0) is finite and
∑∞

k=0 P�(k, t) ⊗ R̂
k

uniformly converges elementwise.
Hence we can exchange

∑
and ∂/∂t on the left hand side of the sum of equations (10) and obtain

the following matrix-differential equation with the initial condition
∑∞

k=0 P�(k, 0)⊗R̂
k

= I⊗I.

d

dt

∞∑
k=0

(
P�(k, t) ⊗ R̂

k
)

=
∞∑

k=0

(
P�(k, t) ⊗ R̂

k
)(

C� ⊗ I + D� ⊗ R̂
)

(11)

This implies
∞∑

k=0

(
P�(k, t) ⊗ R̂

k
)

= exp
([

C� ⊗ I + D� ⊗ R̂
]
t
)

. (12)

Equation (6) follows this and equation (9). �

Remark 1 Denoting
∑∞

k=0 R̂
k
P (k, t) by X(t) and substituting it for equation (8), we obtain

P (V > t) = η̂X(t)e. Furthermore, through a procedure similar to that used for deriving equation
(11), we obtain the differential equation of X(t) as follows:

d

dt
X(t) = X(t)C + R̂X(t)D, X(0) = I. (13)

If R̂ commutes with X(t), the matrix-differential equation (13) has the matrix-exponential solu-
tion X(t) = exp([C +R̂D]t). An example where commutability does hold is the M/PH/1 queue.
However, in our model that commutability does not always hold true. Because

(
e� ⊗ η̂

)
=

η̂
(
e� ⊗ I

)
, it can be seen that X(t)e is given by

X(t)e =
(
e� ⊗ I

)
exp

([
C� ⊗ I + D� ⊗ R̂

]
t
)

ξ.
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Remark 2 Applying the uniformization technique [7] to C and D, we obtain the following
formula, which helps us compute the value of P (V > t):

exp
([

C� ⊗ I + D� ⊗ R̂
]
t
)

=
∞∑

k=0

e−νt (νt)k

k!

(
P�(0) ⊗ I + P�(1) ⊗ R̂

)k
, (14)

where ν = max1≤i≤sA
|cii|, P (0) = I + 1

ν C, and P (1) = 1
ν D. From the definitions, both P (0)

and P (1) are nonnegative, and P (0) + P (1) stochastic.

Remark 3 If C +D = A(0)+A(1)+A(2) is irreducible, then C +D has the stationary prob-
ability vector, which is strictly positive. Let x denote the vector, and let Δ the diagonal matrix
defined by Δ = diag(x), where diag(x) denotes the diagonal matrix whose diagonal elements are
the elements of vector x. We define a reversed MAP of the MAP with representation (C,D)
as that with representation (C̃, D̃), where C̃ = (c̃ij) = Δ−1C�Δ and D̃ = (d̃ij) = Δ−1D�Δ
[12]. Equation (6) means that the distribution of V is a matrix-exponential distribution with
representation (α,T , s) [1], where α = e� ⊗ η̂, T = C� ⊗ I + D� ⊗ R̂, and s = ξ. Let α′, T ′,
and s′ be defined as follows:

α′ = α (Δ⊗ I) = (x ⊗ η̂) ,

T ′ = (Δ⊗ I)−1 T (Δ⊗ I) = C̃ ⊗ I + D̃ ⊗ R̂,

s′ = (Δ⊗ I)−1 s =
(
Δ−1 ⊗ I

)
ξ.

Then, (α′,T ′, s′) becomes another representation for the matrix-exponential distribution of V ,
and we obtain the next formula.

P (V > t) = (x ⊗ η̂) exp
([

C̃ ⊗ I + D̃ ⊗ R̂
]
t
)(

Δ−1 ⊗ I
)

ξ (15)

Remark 4 If the time between two consecutive departure epochs corresponds to the service time
of the customer departing at the latter departure epoch, we can define waiting times of customers
on a QBD process and derive the stationary waiting time distribution in the same manner as
that used for deriving equation (6). Let W be the waiting time of an arbitrary customer in steady
state, then the complementary distribution of W is given by

P (W > t) =
(
e� ⊗ η̂R̂

)
exp

([
C� ⊗ I + D� ⊗ R̂

]
t
)

ξ, (16)

and from this we obtain P (W = 0) = 1 − P (W > 0) = η̂R̂e.

When η̂ defined by equation (4) is strictly positive, the stationary sojourn time distribution
is of phase type.

Corollary 1 Assume that η̂ is strictly positive, and define a 1 × s2
A vector κ and an s2

A × s2
A

matrix K as κ = ξ�
(
I ⊗ Δ̂

)
and K = C⊗I +D⊗ Δ̂

−1
R̂

�
Δ̂, where Δ̂ = diag(η̂). Then, the

stationary sojourn time distribution is identical to the phase-type distribution with representation
(K,κ).

Proof. First, we shall prove that Δ̂
−1

R̂
�
Δ̂ is substochastic. The nonnegativity of Δ̂

−1
R̂

�
Δ̂

follows from that of R̂. In addition, we have

e − Δ̂
−1

R̂
�
Δ̂e = Δ̂

−1
η̂� − Δ̂

−1
R̂

�
η̂� = Δ̂

−1
{
η̂(I − R̂)

}�
= Δ̂

−1
π̂(1)� ≥ 0,

6



and from this we obtain Δ̂
−1

R̂
�
Δ̂e ≤ e. Because of the stationarity assumption of the original

QBD process, the spectral radius of R̂ is less than one and that of Δ̂
−1

R̂
�
Δ̂ is also less than

one. This implies that Δ̂
−1

R̂
�
Δ̂ is strictly substochastic.

Next, we shall prove that κ is a probability vector and K is a phase generator. The non-
negativity of κ is obvious, and the next formula indicates that the sum of κ’s elements is one.

κ (e ⊗ e) = ξ�
(
I ⊗ Δ̂

)
(e ⊗ e) = ξ�

(
e ⊗ η̂�) =

(
e� ⊗ η̂

)
ξ = η̂e = 1

In this calculation, we use Lemma 1. Since C + D has negative diagonal elements and non-
negative off-diagonal elements and Δ̂

−1
R̂

�
Δ̂ is substochastic, K = C⊗I +D⊗ Δ̂

−1
R̂

�
Δ̂ has

negative diagonal elements and non-negative off-diagonal elements. Furthermore, we have

K (e ⊗ e) = Ce ⊗ e + De ⊗ Δ̂
−1

R̂
�
Δ̂e ≤ Ce ⊗ e + De ⊗ e = (C + D)e ⊗ e = 0.

From this and that Δ̂
−1

R̂
�
Δ̂ is substochastic, K is a nonsingular phase generator.

Finally, the next formula shows that the distribution of V is of phase type with representation
(K,κ) [12].

P (V > t) =
{(

e� ⊗ η̂
)

exp
([

C� ⊗ I + D� ⊗ R̂
]
t
)

ξ
}�

= ξ� exp
([

C ⊗ I + D ⊗ R̂
�
]
t

)(
e ⊗ η̂�)

= ξ�
(
I ⊗ Δ̂

)
exp

([
C ⊗ I + D ⊗ Δ̂

−1
R̂

�
Δ̂
]
t

)(
I ⊗ Δ̂

−1
)(

e ⊗ η̂�)
= κ exp(Kt) (e ⊗ e)

�

3.3 Asymptotic properties of P (V > 0)

For a square matrix H , let sp(H) denote the set of eigenvalues of H and spr(H) the spectral
radius of H , i.e. spr(H) = max{|λ| : λ ∈ sp(H)} [2]. From the Perron-Frobenius theorem,
the rate matrix R has the real eigenvalue that equals spr(R), denoted by γR, and has the
corresponding nonnegative left and right eigenvectors, denoted by uR and vR. Since the QBD
process we consider is assumed to have the stationary distribution, we have 0 < γR < 1. Let ν
be defined by ν = max1≤i≤sA

|cii| and consider nonnegative matrix P (x) = I + 1
ν (C + xD) for

x ∈ [0, 1]. Let λ(x) be the maximum eigenvalue of P (x), i.e. λ(x) = spr(P (x)), and let u(x)
and v(x) be the corresponding nonnegative left and right eigenvectors, where we assume that
u(x) and v(x) are normalized by u(x)v(x) = 1. Then we obtain λ(x) = u(x)P (x)v(x) and

d

dx
λ(x) = u(x)Dv(x) ≥ 0.

Thus, when x varies from 0 to γR, λ(x) takes the maximum value at x = γR. Let γ∗ be given
by γ∗ = −ν(1 − λ(γR)), then γ∗ is the real eigenvalue of C + γRD that has the maximum
real part. The assumption that the QBD process has the stationary distribution implies that
λ(γR) = spr

(
I + 1

ν (C + γRD)
)

< spr
(
I + 1

ν (C + D)
)

= λ(1) = 1. Hence we have γ∗ < 0. Let
us define some vectors as follows:

u∗ = u(γR), v∗ = v(γR), uR̂ = uRA(0), vR̂ = NvR.

The next lemma asserts that the maximum eigenvalue of C� ⊗ I + D� ⊗ R̂ is given by γ∗.

7



Lemma 2 γ∗ is the eigenvalue of C� ⊗ I + D� ⊗ R̂ that has the maximum real part, and the
corresponding left and right eigenvectors are given by (v∗)� ⊗uR̂ and (u∗)� ⊗ vR̂, respectively.

Proof. Since R = A(0)N and R̂ = NA(0), sp(R) = sp(R̂) and γR is also the maximum
eigenvalue of R̂, where the corresponding left and right eigenvectors are given by uR̂ and vR̂,
respectively. For z ∈ sp(R̂), let ζ(z) denote the left eigenvector of R̂ corresponding to the
eigenvalue z. For a 1 × sA vector a, we have

(a ⊗ ζ(z))
(
C� ⊗ I + D� ⊗ R̂

)
= a

(
C� + zD�)⊗ ζ(z).

From this, we obtain

sp
(
C� ⊗ I + D� ⊗ R̂

)
=

⋃
z∈sp(R̂)

sp
(
C� + zD�) =

⋃
z∈sp(R)

sp(C + zD) .

In addition, since
(
I + 1

ν C
)�⊗I+

(
1
ν D

)�⊗R̂ is nonnegative, it has the real eigenvalue that

equals λ† = spr
((

I + 1
ν C
)� ⊗ I +

(
1
ν D

)� ⊗ R̂

)
and has the corresponding left eigenvector in

real values. Denoting that eigenvector by u† ⊗ ζ(z†), we have

u†
(

I +
1
ν

(
C + z†D

))
= u†

(
I +

1
ν

C

)
+

1
ν

z†u†D = λ†u†.

This means that z† is a real number or u†D is equal to 0�. In the former case, λ† has to be
λ(γR), since z† ≤ γR and λ(x) is nondecreasing with respect to x. In the latter case, we have
u†
(
I + 1

ν C
)

= u†P (0) = λ†u† and hence we obtain λ† = λ(0) ≤ λ(γR). As a result, in both

the cases, we obtain λ† = λ(γR) and u† = u(γR) = u∗. In the same manner, it can be seen that
the corresponding right eigenvector is given by v(γR) = v∗. The assertion of the lemma follows
γ∗ = −ν(1 − λ(γR)). �

Considering the Jordan canonical form of C� ⊗ I + D� ⊗ R̂, we obtain the next lemma.

Lemma 3 For some k ∈ {0, 1, ...}, we have

exp
([

C� ⊗ I + D� ⊗ R̂
]
t
)

= O(tke−|γ∗|t). (17)

In order to obtain an asymptotic constant for P (V > t), we set the following assumption.

Assumption 1 γ∗ is simple, i.e. in the characteristic polynomial of C� ⊗ I + D� ⊗ R̂, the
multiplicity of γ∗ is 1.

Under this assumption, the dimension of the eigenspace corresponding to γ∗ becomes 1, and
every eigenvalue of C� ⊗ I + D� ⊗ R̂ except for γ∗ has a real part less than γ∗. Hence we
obtain the next theorem.

Theorem 3 Under Assumption 1, we have

lim
t→∞ e|γ

∗|tP (V > t) = η̂NvRuRA(0)v∗u∗e. (18)
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Proof. From Lemma 3 and Assumption 1, we obtain

lim
t→∞ e|γ

∗|t exp
([

C� ⊗ I + D� ⊗ R̂
]
t
)

=
(
(u∗)� ⊗ vR̂

) (
(v∗)� ⊗ uR̂

)
,

where vR̂ = NuR and uR̂ = uRA(0). Hence, through Lemma 1, the assertion of the theorem
follows

lim
t→∞ e|γ

∗|tP (V > t) =
(
e� ⊗ η̂

)(
(v∗u∗)� ⊗ NvRuRA(0)

)
ξ.

�

Remark 5 The size of the matrices used for computing γ∗ and the right hand side of equation
(18) is sA × sA. This is much smaller than the size of exp

([
C� ⊗ I + D� ⊗ R̂

]
t
)
, which is

s2
A × s2

A.

Remark 6 For a nonnegative d × d matrix H = (hij), let the set of states for H be defined
by S = {1, 2, ..., d} and say that states i and j communicate if h

(k)
ij > 0 for some k ∈ {0, 1, ...}

and h
(l)
ji > 0 for some l ∈ {0, 1, ...}, where Hn = (h(n)

ij ). Using this relation, we can define
communication classes and irreducibility for nonnegative matrices in the same manner as that
for stochastic matrices [2]. In our framework, the nonnegative matrix

(
I + 1

ν C�
)
⊗I+ 1

ν D�⊗R̂

may not be irreducible and it may have several communication classes, say m communication
classes. In that case, for k ∈ {1, 2, ...,m}, let square matrix P k be the restriction of

(
I + 1

ν C�
)
⊗

I + 1
ν D� ⊗ R̂ to communication class k, then P k is irreducible and λk = spr(P k) becomes a

simple eigenvalue of P k. Furthermore, we have

sp
((

I +
1
ν

C�
)
⊗ I +

1
ν
D� ⊗ R̂

)
=

m⋃
k=1

sp(P k).

Assumption 1 is, therefore, equivalent to that λ(γR) = maxk spr(P k) is attained by only one
communication class or that the matrix

(
I + 1

ν C�
)
⊗ I + 1

ν D� ⊗ R̂ itself is irreducible.

4 MAP/MSP/1 queue and numerical examples

4.1 MAP/MSP/1 queue

At first, we briefly explain Markovian service process (MSP) [11]. Consider two sets of states
(phases) for the server, J1 = {1, 2, ..., s1} and J ′

1 = {1, 2, ..., s′1}, and assume that when the
system is not empty, the server’s state is in J1; otherwise it is in J ′

1. Let S and T denote s1×s1

matrices and let S + T be the infinitesimal generator of the continuous-time Markov chain that
governs state transition of the server when the system is not empty. The elements of S are
state transition rates without service completions, and those of T are state transition rates with
service completions. Furthermore, we introduce an s1×s1 transition probability matrix U which
governs state transition of the server at customer arrival epochs. This U enables us to represent
models in which the server changes its state at customer arrival epochs. An s′1 × s′1 matrix S′,
an s1×s′1 matrix T ′ and an s′1×s1 matrix U ′ are similarly defined in the case where the system
is empty. The MSP is represented by these six elements (S,T ,U ,S ′,T ′,U ′).

Next, we consider a MAP with representation (C̄, D̄), where the phase set of the MAP is
given by I = {1, 2, ..., s2}. We define the state of the system at time t by Y (t) = (L(t), J(t), I(t)),
where L(t) is the number of customers in the system, J(t) the phase of the MSP, and I(t) the

9



phase of the MAP, and call it a MAP/MSP/1 queue. {Y (t)} is the continuous-time Markov
chain whose infinitesimal generator Q is given by the block tri-diagonal matrix

Q =

⎛
⎜⎜⎜⎝

S′ ⊕ C̄ U ′ ⊗ D̄
T ′ ⊗ I S ⊕ C̄ U ⊗ D̄

T ⊗ I S ⊕ C̄ U ⊗ D̄
. . . . . . . . .

⎞
⎟⎟⎟⎠ . (19)

This means that {Y (t)} is a QBD process and that we can compute the sojourn time distribution
by using the results in the previous section. In numerical examples, we deal with well-known
two kinds of service models below, which are represented in block forms:

S =
(

S11 S12

S21 S22

)
, T =

(
T 11 T 12

T 21 T 22

)
, U =

(
U11 U12

U21 U22

)
,

T ′ =
(

T ′
11

T ′
21

)
, U ′ = (U ′

11 U ′
12 ) .

N -policy model [6]: N -policy is a service discipline in which once the server becomes idle, it
does not begin service until more than N new customers arrive. Let the service time distribution
be of phase type with representation (B̄, β̄). The representation of an MSP with N -policy is
given by

S11 = O, S12 = O, S21 = O, S22 = B̄, T 11 = O, T 12 = O, T 21 = O, T 22 = b̄β̄,

U11 =

⎛
⎜⎜⎜⎝

0 1
. . . . . .

0 1
0

⎞
⎟⎟⎟⎠ , U12 =

⎛
⎜⎜⎜⎝

0�
...

0�

β̄

⎞
⎟⎟⎟⎠ , U21 = O, U22 = I,

S′ = O, T ′
11 = O, T ′

21 = ( b̄ 0 · · · 0 ) , U ′
11 = U11, U ′

12 = U12,

where b̄ = −B̄e. S11, T 11, and U11 are N ×N matrices, i.e. s1 = N . The MSP with N -policy
is an example of service models in which the service process depends on the arrival process.

Exceptional service model [3, 15]: Exceptional service is a service model in which at most
K customers firstly arriving in each busy period receive different service from that received by
other customers. For k ∈ {1, 2, ...,K}, let the service time distribution of the kth customer
arriving in each busy period be of phase type with representation (B̄1k, β̄1k). Let the service
time distribution of other customers be of phase type with representation (B̄2, β̄2). Then the
representation of an MSP with exceptional service is given by

S11 = diag(B̄11, ..., B̄1K), S12 = O, S21 = O, S22 = B̄2,

T 11 =

⎛
⎜⎜⎜⎝

O b̄11β̄12
. . . . . .

O b̄1K−1β̄1K

O

⎞
⎟⎟⎟⎠ , T 12 =

⎛
⎜⎜⎜⎝

O
...
O

b̄1Kβ̄2

⎞
⎟⎟⎟⎠ , T 21 = O, T 22 = b̄2β̄2,

U11 = I, U 12 = O, U21 = O, U22 = I,

S′ = O, T ′
11 =

⎛
⎜⎝

b̄11β̄11 O
...

...
b̄1Kβ̄11 O

⎞
⎟⎠ , T ′

21 = ( b̄2β̄11 O ) , U ′
11 = U11, U ′

12 = U 12,

where b̄1k = −B̄1ke, k = 1, 2, ...,K, and b̄2 = −B̄2e. diag(B̄11, ..., B̄1K) denotes the block
diagonal matrix whose block diagonal elements are B̄11, ..., B̄1 K−1, and B̄1K .
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4.2 Numerical examples

We show some numerical examples for the N -policy model and for the exceptional service model
described in the previous subsection. Consider a MAP whose representation (C̄, D̄) is given by

C̄ =
(−(γ1 + λ1) γ1

γ2 −(γ2 + λ2)

)
, D̄ =

(
λ1 0
0 λ2

)
.

This MAP is a Markov modulated Poisson process (MMPP) and its mean arrival rate λ is given
by λ = (γ1λ2 + γ2λ1)/(γ1 + γ2). We use this MAP in both the models. In the N -policy model,
let service times be subject to a 2-Erlang distribution with mean h. Then we have

B̄ =
(−2/h 2/h

0 −2/h

)
, β̄ = (1 0 ) .

For the exceptional service model, we assume that at most two customers firstly arriving in each
busy period receive different service from that received by other customers, i.e. K = 2. Let the
service times of the first and second customers be subject to a common 2-Erlang distribution
with mean h′. Then we have

B̄1i =
(−2/h′ 2/h′

0 −2/h′
)

, i = 1, 2, β̄11 = β̄12 = ( 1 0 ) .

Let the service times of other customers be subject to the same distribution as that used for the
N -policy model, i.e. B̄2 = B̄.

Figure 1 shows complementary distributions of sojourn time for the models, where exact
indicates that numerical results are obtained through formula (6) and asymp. indicates that
those are obtained through formula (18). The parameters of the MAP are set as γ1 = 1/2,
γ2 = 4/5, λ1 = 1/2 and λ2 = 3/2, and we obtain λ = 23/26. The mean of ordinary service times
is set as h = 1. Traffic intensity ρ defined by ρ = λh is equal to 23/26 ≈ 0.88. In the N -policy
model, N takes values in {1, 5, 10}. From Fig. 1 (a), we can see how the value of N influences
the sojourn time distribution. In the exceptional service model, the mean service time of the
first and second customers, h′, takes values in {1, 3, 5}. When h′ = 1, the model corresponds to
an ordinary MMPP/E2/1 queue. From Fig. 1 (b), we can also see how the value of h′

1 influences
the sojourn time distribution.

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50
 

N = 1 (exact)

N = 5 (exact)

N = 10 (exact)

N = 10 (asymp.)

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50

h = 1 (exact)

h = 3 (exact)

h = 5 (exact)
h = 5 (asymp.)

N h'

(a) N-policy model (b) Exceptional service model

N

N

t t

P(V > t ) P(V > t )

N
h'

h'
h'

Figure 1: Complimentary distributions of sojourn time.
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5 Concluding Remarks

The results in Section 3 can be extended to GI/M-type Markov chains [7, 10], which represent
single-arrival batch-service queueing models. Let the infinitesimal generator of a GI/M-type
Markov chain be

Q =

⎛
⎜⎜⎜⎜⎜⎝

B(1) B(0)
B(2) A(1) A(0)
B(3) A(2) A(1) A(0)
B(4) A(3) A(2) A(1) A(0)

...
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎠ , (20)

then the complementary distribution of the stationary sojourn time is obtained through the
same arguments as in Section 3, as follows:

P (V > t) =
(
e� ⊗ η̂

)
exp

([ ∞∑
l=0

D�
l ⊗ R̂

l

]
t

)
ξ, (21)

where D0 = A(0) + A(1) and Dl = A(l − 1), l ≥ 1; η̂ and R̂ are defined in the same manner
as in Section 3, and (Dl, l ≥ 0) corresponds to the representation of a batch Markovian arrival
process (BMAP) [7, 9].
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