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Abstract

Markovian service process (MSP) is a model similar to the Markovian arrival process
(MAP), where arrivals are replaced with service completions. The MSP can represent various
queueing models such as vacation models, N -policy models and exceptional service models.
We analyze MAP/MSP/1 queues and obtain a new sort of matrix-type factorization of the
vector generating function for the stationary queue length. The MAP/MSP/1 queue is a
very tractable model since its behavior is represented as a quasi-birth-and-death process.

1 Introduction

In the area of queueing theory, various service disciplines have been proposed for analyzing
computer communications systems, production systems and other kinds of systems. Typical
examples are vacation [5], N -policy [10] and exceptional service [1, 12, 21]. According to the
disciplines, a server is engaged in two kinds of work: one is ordinary service for customers and
the other is secondary work corresponding to vacation or exceptional service, for example. We
represent the behavior of the server as a continuous-time Markov chain whose state indicates
which kind of work the server is engaged in. This service process is similar to a Markovian
arrival process (MAP) [15], where arrivals are replaced with service completions. We refer to
the service process as a Markovian service process (MSP) and study MAP/MSP/1 queues. In
Refs [19, 20], the idea of using two types of states (phases) was used in analyzing queueing
models with vacations. This idea is extended to a general service discipline in our model. The
behavior of a MAP/MSP/1 queue is represented as a quasi-birth-and-death (QBD) process,
which is analyzed by using matrix analytic methods [16].

One of the most interesting properties in the M/G/1 queue with multiple vacations is the
stochastic decomposition for the stationary queue length [5]; it is the property that the stationary
queue length is distributed as the independent sum of the stationary queue length in an M/G/1
queue without vacations and the number of arrivals during a residual vacation time. (The
property of stochastic decomposition also holds true for other random variables such as the
stationary waiting time [4, 5]. However, we will focus only on the stationary queue length in
this paper.) The aim of studying such a stochastic decomposition is to understand stochastic
characteristics of the behavior of queueing models, and this understanding is expected to help
analyze the queueing models. For the purpose, appropriate stochastic interpretations should be
given to the obtained stochastic decompositions.

The property of stochastic decomposition has been extended to some directions. Reference
[9] deals with an extended version of ordinary vacation, called generalized vacation. The class
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of generalized vacation includes almost all nonpreemptive-type service disciplines forcing the
server to do other work than service for customers. In the M/G/1 queue with generalized
vacations, the stationary queue length is distributed as the independent sum of the stationary
queue length in an M/G/1 queue without vacations and the number of customers in the system
at an arbitrary time during the vacation. References [7, 15] show that the vector generating
function (v.g.f.) for the stationary queue length in the MAP/G/1 queue with multiple vacations
is given by the product of the v.g.f. for the stationary queue length in a MAP/G/1 queue
without vacations and the matrix generating function (m.g.f.) for the number of arrivals during
a residual vacation time. This result relies on a certain characteristic of the multiple-vacation
model, and in general it seems not to hold in MAP/G/1 queues with other kinds of service
disciplines such as the MAP/G/1 queue with setup times. Reference [14] shows that a sort of
matrix-type factorization holds in the MAP/G/1 queue under multiple and single vacations with
N -policy. In this model, the v.g.f. for the stationary queue length is factorized into two parts:
the v.g.f. for the queue length at an arbitrary time when the server is not in service and the rest
matrix part. However, it seems difficult to give a stochastic interpretation to the matrix part.
Reference [3] shows that a similar matrix-type factorization also holds in the BMAP/G/1 queue
with generalized vacations.

In this paper, focusing on the block forms of the MSP, we obtain a new sort of matrix-type
factorization of the v.g.f. for the stationary queue length in MAP/MSP/1 queues, where the v.g.f.
is factorized into three parts. This matrix-type factorization has a certain stochastic interpre-
tation in some cases. For example, in the MAP/MSP/1 queue corresponding to a MAP/PH/1
queue with multiple vacations, the first part is the v.g.f. for the queue length at an arbitrary
time during the vacation, the second part a matrix of phase transition rates and the third part
an un-normalized m.g.f. for the queue length at an arbitrary time during the busy period in a
MAP/PH/1 queue without vacations. Furthermore, in a certain type of MAP/MSP/1 queue,
the first and third parts can be independently obtained from two submodels and the second
part is given in terms of a matrix of the transition probabilities connecting the two submodels.
We also obtain a new sort of stochastic decomposition for the stationary queue length in the
M/PH/1 queue in which the service speed may vary depending on the server’s state. A typical
example is a working vacation model [17, 22], where the service speed falls down when the server
is on vacation. In the M/PH/1 queue with working vacations, the stationary queue length is
distributed as the conditional sum of the stationary queue length in an M/PH/1 queue without
vacations and the number of customers in the system at an arbitrary time during the vacation.
Note that, the block forms of the MSP are based on two types of phases of the MSP and similar
factorizations (decompositions) have been obtained for vacation models in Refs [19, 20].

The rest of the paper is organized as follows. In Section 2, the MAP/MSP/1 queue is
described in detail and some examples of the MSP are presented. In Section 3, we obtain a sort
of matrix-type factorization for a general QBD process. In Section 4, matrix-type factorizations
for MAP/MSP/1 queues are derived from the results in Section 3. Some special cases are
discussed in Section 5. In Section 6, we explain computation of the stationary queue-length
distribution and give some numerical examples.

2 Queueing Models with Markovian Service Processes

2.1 Markovian Service Process

Consider a queueing model in which the server behaves in a different manner when the system
is empty. For example, in a multiple-vacation model, the server keeps on taking new vacations
whenever the system is empty while it begins service for customers when the system is not empty
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after a vacation. In order to represent this behavior of the server, we consider two different sets
of states (phases) for the server, J and J ′, defined as J = {1, 2, ..., s} and J ′ = {1, 2, ..., s′},
where s is the number of states in J and s′ that of states in J ′. When the system is not empty,
the server’s state is in J ; when the system is empty, the server’s state is in J ′. Let S and
T denote s × s matrices and let S + T be the infinitesimal generator of the continuous-time
Markov chain that governs the state transition of the server when the system is not empty.
The elements of S are state transition rates without service completions, and those of T are
state transition rates with service completions. Furthermore, we introduce an s × s transition
probability matrix U which governs the state transition of the server at customer arrival points.
This U enables us to represent the models in which the server changes its state at customer
arrival points; for example, we can represent an N -policy model as a MSP. An s′× s′ matrix S′,
an s × s′ matrix T ′ and an s′ × s matrix U ′ are similarly defined in the case where the system
is empty. Note that S′ itself is an infinitesimal generator. The MSP is represented by these six
elements (S,T ,U ,S ′,T ′,U ′).

2.2 MAP/MSP/1 Queue

Using the MSP, a MAP/MSP/1 queue is constructed as follows. Let sA denote the number
of phases of the MAP and I the phase set defined by I = {1, 2, ..., sA}. Let (C,D) be the
representation of the MAP. Let L(t) denote the number of customers in the system at time t,
J(t) the state (phase) of the MSP and I(t) the phase of the MAP. We define the state of the
system at time t by Y (t) = (L(t), J(t), I(t)). {Y (t)} is the continuous-time Markov chain whose
infinitesimal generator Q is given by the block tri-diagonal matrix

Q =

⎛
⎜⎜⎜⎝

S′ ⊕ C U ′ ⊗ D
T ′ ⊗ I S ⊕ C U ⊗ D

T ⊗ I S ⊕ C U ⊗ D
. . . . . . . . .

⎞
⎟⎟⎟⎠ , (1)

where I is the identity matrix of suitable dimension. We denote by ⊗ the Kronecker product
operation and by ⊕ the Kronecker sum operation [2]. (For some notations, we may use primes
or subscripts for indicating their dimensions. For example, I ′ is the identity matrix of dimension
s′, and IA is that of dimension sA.) From the block form of Q, {Y (t)} is a quasi-birth-and-death
(QBD) process.

For l ≥ 1, we define L(l) by L(l) = {(l, j, i); j ∈ J , i ∈ I} and refer to it as level l. We also
define L(0) by L(0) = {(0, j, i); j ∈ J ′, i ∈ I} and refer to it as level 0. Let π(l, j, i) be the
steady state probability that the process is in the state (l, j, i). π(l) = (π(l, j, i), j ∈ J , i ∈ I)
(resp. π(0) = (π(0, j, i), j ∈ J ′, i ∈ I)) is the row vector of the probabilities that the process is
in level l (resp. level 0), and π = (π(l), l ≥ 0) is the stationary distribution of the process. We
assume that the stationary distribution π always exists. Consider a period of time that begins
when the process is in the state (l, j, i) for some l ≥ 1 and ends when it enters level l− 1 for the
first time. Let n(j,i)(j′,i′) be the mean sojourn time of the process in the state (l, j′, i′) during
the period and let N be the s sA × s sA matrix defined by N = (n(j,i)(j′,i′)). This N will play
a crucial role in analyzing the model. Since {Y (t)} is a QBD process, π is given by the matrix
geometric solution [13, 16]

π(l) = π(0)(U ′ ⊗ D)NRl−1, l ≥ 1, (2)

where R is the rate matrix of {Y (t)} and it is given by

R = (U ⊗ D)N . (3)
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π(0) is given by the non-negative row vector that satisfies

π(0)
{
S′ ⊕ C + (U ′ ⊗ D)N (T ′ ⊗ I)

}
= 0� (4)

and the normalizing condition

π(0)
{
e′ + (U ′ ⊗ D)N(I − R)−1e

}
= 1, (5)

where 0 is a column vector of 0’s, e is that of 1’s and the superscript � indicates the transpose.

2.3 Block Forms of the MSP

In order to explore matrix-type factorizations in the next section, we divide the phase set J into
two exclusive subsets: the set of secondary service phases, denoted by J1, and that of primary
service phases, denoted by J2. Secondary service and primary service will be specified in each
model. For example, in a multiple vacation model, the secondary service corresponds to vacation
and the primary service corresponds to service for customers. Without loss of generality, we
assume that J1 = {1, 2, ..., s1} and J2 = {s1 +1, s1 +2, ..., s1 +s2}, where s1 +s2 = s. According
to this partition of J , the elements S, T and U of the MSP are given in the following block
forms:

S =
(

S11 S12

S21 S22

)
, T =

(
T 11 T 12

T 21 T 22

)
, U =

(
U11 U12

U21 U22

)
.

For example, S12 is the s1 × s2 matrix whose elements are state transition rates from J1 to J2.
The other elements of the MSP except for S′ are also given in the block forms

T ′ =
(

T ′
11

T ′
21

)
, U ′ = (U ′

11 U ′
12 ) .

The infinitesimal generator Q of {Y (t)} is given by the block tri-diagonal matrix

� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

�′ ⊕� (� ′
11 ⊗� � ′

12 ⊗� )(
� ′

11 ⊗ �
� ′

21 ⊗ �
) (

�11 ⊕� �12 ⊗ �
�21 ⊗ � �22 ⊕�

) (
�11 ⊗� �12 ⊗�
�21 ⊗� �22 ⊗�

)
(
� 11 ⊗ � � 12 ⊗ �
� 21 ⊗ � � 22 ⊗ �

) (
�11 ⊕� �12 ⊗ �
�21 ⊗ � �22 ⊕�

) (
�11 ⊗� �12 ⊗�
�21 ⊗� �22 ⊗�

)

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

and R and N are given in the block forms

R =
(

R11 R12

R21 R22

)
, N =

(
N 11 N12

N 21 N22

)
.

Furthermore, the matrix N is represented as

N =
(

N 11 K12N22

K21N 11 N 22

)
,

where K12 is an s1sA × s2sA substochastic matrix and K21 is an s2sA × s1sA substochastic
matrix. We say that a matrix A is substochastic (resp. stochastic) if A ≥ O and Ae ≤ e (resp.
Ae = e), where O is a matrix of 0’s, and use the terms “substochastic” and “stochastic” not only
for square matrices but also for non-square matrices as well as column vectors. K12 and K21 have
the following meanings. For l ≥ 1, let L1(l) ⊂ L(l) be defined by L1(l) = {(l, j, i); j ∈ J1, i ∈ I}
and L2(l) by L2(l) = L(l)−L1(l). [K12](j,i),(j′,i′) is the probability that a sample path of {Y (t)}
starting in the state (l, j, i) ∈ L1(l) for some l ≥ 1 visits L2(l) before entering L(l − 1) and
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(l, j′, i′) is the first state visited in L2(l). [K21](j,i),(j′,i′) is characterized in the same way. The
stationary queue length distribution is given in the block form

π(l) = (π1(l) π2(l) ) , l ≥ 1,

where πk(l) = (π(l, j, i), j ∈ Jk, i ∈ I), k = 1, 2.
In the following sections, we will obtain matrix-type factorizations related to the partition

of J above. In preparation for it, we here classify MSPs as follows.

• Exhaustive service type (EX-type): S21 = O, T 21 = O and U21 = O.

• Non-preemptive service type (NP-type): S21 = O, U21 = O and U22 = I.

• Vacation type (VA-type): T 11 = O and T 12 = O. (This implies T ′
11 = O.)

In an MSP of EX-type, once the server visits one of the primary service phases, it stays among
the primary service phases until the system becomes empty. In an MSP of NP-type, once
the server visits one of the primary service phases, it stays among the primary service phases
independently of the arrival process until one customer departs from the system. In an MSP of
VA-type, no departures occur when the server is in the secondary service phases.

Let (B2,β2) be the representation of a PH-type distribution. For MSPs of EX-type and
those of NP-type, we further define a special class of MSP as follows.

• I.i.d. PH-type service type (IID-type):

S =
(

S11 s12β2

O B2

)
, T =

(
T 11 t12β2

T 21 t22β2

)
, U =

(
U11 u12β2

O U22

)
,

U ′ = ( U ′
11 u′

12β2 ) , (6)

where u12 = e − U11e, u′
12 = e− U ′

11e, and s12 and t12 are non-negative column vectors
satisfying S11e + s12 + T 11e + t12 = 0.

2.4 Examples of the MSP

Multiple vacation and setup time [4]: Let the service time distribution be of phase type
with representation (B2,β2) and let the vacation time distribution be of phase type with rep-
resentation (B1,β1). The representation of an MSP with multiple vacations is given by

S =
(

B1 b1β2

O B2

)
, T =

(
O O
O b2β2

)
, U =

(
I O
O I

)
,

S′ = B1 + b1β1, T ′ =
(

O
b2β1

)
, U ′ = ( I O ) ,

where b1 = −B1e and b2 = −B2e. Consider an MSP with setup times in which the setup-time
distribution is of phase type with the representation (B2,β2). Then, the representation of the
MSP with setup times becomes the same as that of the MSP with multiple vacations except for
S′; S′ is equal to O in the setup time model. The multiple-vacation model and the setup time
model are of EX, NP, VA and IID-type.

Bernoulli vacation [11]: Let the service time distribution be of phase type with repre-
sentation (B2,β2) and let the vacation time distribution be of phase type with representation
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(B1,β1). Let p be the probability that the server begins a vacation after completing a service.
The representation of an MSP with Bernoulli vacations is given by

S =
(

B1 b1β2

O B2

)
, T =

(
O O

pb2β1 (1 − p)b2β2

)
, U =

(
I O
O I

)
,

S′ = B1 + b1β1, T ′ =
(

O
b2β1

)
, U ′ = ( I O ) ,

where b1 = −B1e and b2 = −B2e. In this model, when the system is empty, the server takes
multiple vacations. The Bernoulli vacation model is of NP, VA and IID-type.

On-off service [8]: Let the service time distribution be of phase type with representation
(B2,β2) and let the on and off time distributions for the server be of phase type with repre-
sentations (Bon,βon) and (Boff ,βoff ), respectively. The representation of an MSP with on-off
service is given by

S =
(

Boff ⊗ I boffβon ⊗ I
bonβoff ⊗ I Bon ⊕ B2

)
, T =

(
O O
O I ⊗ b2β2

)
, U =

(
I O
O I

)
,

S′ =
(

Boff ⊗ I boffβon ⊗ I
bonβoff ⊗ I Bon ⊗ I

)
, T ′ = T , U ′ = U ,

where b1 = −B1e, bon = −Bone and boff = −Boffe. The on-off service model is of VA-type.

Working vacation [17]: Let the service time distribution be of phase type with repre-
sentation (B2,β2) and let the vacation time distribution be of phase type with representation
(B1,β1). Let c ≥ 0 be the ratio of service speed when the server is on vacation. The represen-
tation of an MSP with preemptive-repeat working vacations is given by

S =
(

B1 ⊕ cB2 b1 ⊗ eβ2

O B2

)
, T =

(
I ⊗ cb2β2 O

O b2β2

)
, U =

(
I O
O I

)
,

S′ = (B1 + b1β1) ⊗ I, T ′ =
(

I ⊗ cb2β2

β1 ⊗ b2β2

)
, U ′ = ( I O ) ,

where b1 = −B1e and b2 = −B2e. In this model, if a vacation ends during a service for
a customer, the service is repeated from the beginning. On the other hand, if the service is
resumed, the model is called a preemptive-resume working vacation model and S12 = b1 ⊗ eβ2

is replaced with S12 = b1 ⊗ I. While the preemptive-repeat working vacation model is of EX,
NP and IID-type, the preemptive-resume working vacation model is of EX and NP-type.

N-policy [10]: Let the service time distribution be of phase type with representation
(B2,β2). The representation of an MSP with N -policy is given by

S11 = O, S12 = O, S21 = O, S22 = B2, T 11 = O, T 12 = O, T 21 = O, T 22 = b2β2,

U11 =

⎛
⎜⎜⎜⎝

0 1
. . . . . .

0 1
0

⎞
⎟⎟⎟⎠ , U12 =

⎛
⎜⎜⎜⎝

0�
...

0�

β2

⎞
⎟⎟⎟⎠ , U21 = O, U22 = I,

S′ = O, T ′
11 = O, T ′

21 = ( b2 0 · · · 0 ) , U ′
11 = U11, U ′

12 = U12,

where b2 = −B2e. S11, T 11 and U11 are N × N matrices, i.e., s1 = N . This representation
makes the Markov chain {Y (t)} reducible, but it satisfies U ′

11 = U11 and U ′
12 = U12. Hence

6



we have s′ = s1 and this makes some formulas derived in the following sections simple. The
N -policy model is of EX, NP, VA and IID-type.

Exceptional service [1]: Consider a model in which at most k customers firstly arriving
in each busy period receive different services from those received by other customers. For
i ∈ {1, 2, ..., k}, let the service time distribution of the ith customer arriving in each busy period
be of phase type with representation (B1i,β1i). The service time distribution of other customers
is of phase type with representation (B2,β2). The representation of an MSP with exceptional
service is given by

S11 = diag(B11, ..., B1k), S12 = O, S21 = O, S22 = B2,

T 11 =

⎛
⎜⎜⎜⎝

O b11β12
. . . . . .

O b1k−1β1k

O

⎞
⎟⎟⎟⎠ , T 12 =

⎛
⎜⎜⎜⎝

O
...
O

b1kβ2

⎞
⎟⎟⎟⎠ , T 21 = O, T 22 = b2β2,

U11 = I, U 12 = O, U21 = O, U22 = I,

S′ = O, T ′
11 =

⎛
⎜⎝

b11β11 O
...

...
b1kβ11 O

⎞
⎟⎠ , T ′

21 = ( b2β11 O ) , U ′
11 = U11, U ′

12 = U12,

where b1i = −B1ie, i = 1, 2, ..., k, and b2 = −B2e. diag(A1, ...,Ak) denotes the block diagonal
matrix whose block diagonal elements are A1, ..., Ak−1 and Ak. This representation makes the
Markov chain {Y (t)} reducible, but it satisfies U ′

11 = U11 and U ′
12 = U12. The exceptional

service model is of EX, NP and IID-type.

3 Matrix-Type Factorizations for QBD Processes

In the following sections, we will derive matrix-type factorizations for various MAP/MSP/1
queues, which are based on the partition of the phase set J described in Subsection 2.3. Here
we show that a sort of matrix-type factorization can be obtained for a general QBD process.
The matrix-type factorizations for the MAP/MSP/1 queues are directly derived from the result.

We define some notations for a QBD process, but they are used in this section only. Hence
we denote the notations with bars so that they can easily be distinguished from notations
for MAP/MSP/1 queues. Consider a QBD process {Ȳ (t)} = {(L̄(t), J̄(t))} on state space
S̄ = ({0} × J̄B) ∪ (N+ × J̄A), where L̄(t) and J̄(t) are the level and the phase at time t,
J̄A = {1, 2, ..., s̄A} and J̄B = {1, 2, ..., s̄B} are the phase sets, and N+ is the set of positive
integers. Let the infinitesimal generator of the QBD process be

Q̄ =

⎛
⎜⎜⎜⎝

B̄(1) B̄(0)
B̄(2) Ā(1) Ā(0)

Ā(2) Ā(1) Ā(0)
. . . . . . . . .

⎞
⎟⎟⎟⎠ , (7)

where Ā(i), i = 1, 2, 3, are s̄A × s̄A matrices, B̄(0) an s̄B × s̄A matrix, B̄(1) an s̄B × s̄B matrix
and B̄(2) an s̄A × s̄B matrix. We assume that the QBD process has the stationary distribution
and denote it by π̄ = ( π̄(0) π̄(1) π̄(2) ... ). Consider a period of time that begins when
the process is in the state (l, j) for some l ≥ 1 and ends when it enters level l − 1 for the first
time. Let n̄jj′ be the mean sojourn time of the process in the state (l, j′) during the period and
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let N̄ be the s̄A × s̄A matrix defined by N̄ = (n̄jj′). Let R̄ denote the rate matrix of the QBD
process, then the matrix geometric solution of the stationary distribution is given by

π̄(i) = π̄(1)R̄i−1
, i ≥ 2, (8)

where π̄(1) = π̄(0)B̄(0)N̄ , and π̄(0) is given by the non-negative vector that satisfies

π̄(0)
{
B̄(1) + B̄(0)N̄B̄(2)

}
= 0� and π̄(0)

{
I + B̄(0)N̄ (I − R̄)−1

}
e = 1.

Now we arbitrarily divide J̄A into two subsets J̄A1 and J̄A2. Without loss of generality, we
assume that J̄A1 = {1, 2, ..., s̄A1} and J̄A2 = {s̄A1+1, s̄A1+2, ..., s̄A1+s̄A2}, where s̄A1+s̄A2 = s̄A.
Then, the following block forms of Ā(k), B̄(0), B̄(2), R̄ and π̄(l) are obtained.

Ā(k) =
(

Ā11(k) Ā12(k)
Ā21(k) Ā22(k)

)
, k = 0, 1, 2, B̄(0) = ( B̄11(0) B̄12(0) ) ,

B̄(2) =
(

B̄11(2)
B̄21(2)

)
, R̄ =

(
R̄11 R̄12

R̄21 R̄22

)
, π̄(l) = ( π̄1(l) π̄2(l) ) , l ≥ 0.

Matrix-type factorizations for the QBD process are given by the next lemma.

Lemma 1 For l ≥ 1, π̄1(l) is represented in terms of π̄2(k) as follows.

π̄1(l) = π̄1(1)R̄l−1
11 +

l−1∑
k=1

π̄2(k)R̄21R̄
l−1−k
11 . (9)

For l ≥ 1, π̄2(l) is also represented in terms of π̄1(k) as follows.

π̄2(l) = π̄2(1)R̄l−1
22 +

l−1∑
k=1

π̄1(k)R̄12R̄
l−1−k
22 . (10)

From these formulae, the transform of π̄(l), π̃∗(z), defined as

π̃∗(z) ≡
∞∑
l=1

zl ( π̄1(l) π̄2(l) ) = ( π̃∗
1(z) π̃∗

2(z) )

is given by

π̃∗
1(z) =

(
zπ̄1(1) + π̃∗

2(z)zR̄21
) (

I − zR̄11
)−1

, (11)

π̃∗
2(z) =

(
zπ̄2(1) + π̃∗

1(z)zR̄12

) (
I − zR̄22

)−1
. (12)

Proof: From the matrix geometric solution, we have π̄(l + 1) = π̄(l)R̄ for l ≥ 1. Hence we
obtain

π̄1(l + 1) = π̄1(l)R̄11 + π̄2(l)R̄21, l ≥ 1,

π̄2(l + 1) = π̄2(l)R̄22 + π̄1(l)R̄12, l ≥ 1.

Equations (9) and (10) are derived from these recursive formulae. �

The reason why we use the transform π̃∗(z) in this lemma will be explained in Remark 1
in the next section. Here we do not give any interpretations to matrix-type factorizations (11)
and (12) since the partition of the phase set of the QBD process is arbitrary and it has no
meanings. However, we have to say that the assertion of this lemma is essential and matrix-type
factorizations for MAP/MSP/1 queues can be directly obtained from these factorizations.
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4 Matrix-Type Factorizations for MAP/MSP/1 Queues - Gen-

eral Case -

Here we consider the MAP/MSP/1 queue described in Section 2. For k ∈ {1, 2}, let πk(l) be
the row vector of the probabilities that the queue length is l and the server’s state is in Jk at an
arbitrary time. In the case of an M/PH/1 queue with multiple vacations, π1(l) is the row vector
of the probabilities that the queue length is l and the server is on vacation at an arbitrary time;
π2(l) is the row vector of the probabilities that the queue length is l and the server is serving
a customer at an arbitrary time. From the stochastic decomposition property for the M/G/1
queue with multiple vacations, we obtain

π2(l)e = π(l)e − π1(l)e =
l∑

k=1

π1(l − k)e
π0(k)
1 − ρ0

, l ≥ 1, (13)

where π0 = (π0(l)) is the stationary queue length distribution in an M/PH/1 queue without
vacations and ρ0 is the traffic intensity of the queue. In this formula, we assume that π1(0) =
π(0). From equation (13), we obtain the next transform of π2(l)e:

π̃∗
2(z)e ≡

∞∑
l=1

zlπ2(l)e = (π(0)e + π̃∗
1(z)e)

π̃∗
0(z)

1 − ρ0
, (14)

where π̃∗
1(z)e ≡ ∑∞

l=1 zlπ1(l)e and π̃∗
0(z) ≡ ∑∞

l=1 zlπ0(l). For the MAP/MSP/1 queue, taking
account of π(1) = π(0)(U ′ ⊗D)N , we directly derive the next lemma from Lemma 1, and this
lemma gives an extension of formula (14).

Lemma 2 In the MAP/MSP/1 queue, for l ≥ 1, π1(l) is represented in terms of π2(k) as
follows:

π1(l) = π(0)(I ⊗ D)K̂
′
21N 11R

l−1
11 +

l−1∑
k=1

π2(k)(I ⊗ D)K̂21N 11R
l−1−k
11 , (15)

where K̂
′
21 = (U ′

11 ⊗ I) + (U ′
12 ⊗ I)K21 and K̂21 = (U 21 ⊗ I) + (U 22 ⊗ I)K21. Both K̂

′
21 and

K̂21 are substochastic. For l ≥ 1, π2(l) is also represented in terms of π1(k) as follows:

π2(l) = π(0)(I ⊗ D)K̂
′
12N 22R

l−1
22 +

l−1∑
k=1

π1(k)(I ⊗ D)K̂12N 22R
l−1−k
22 , (16)

where K̂
′
12 = (U ′

11⊗I)K12+(U ′
12⊗I) and K̂12 = (U11⊗I)K12+(U12⊗I). Both K̂

′
12 and K̂12

are substochastic. From these formulae, π̃∗(z) ≡ ∑∞
l=1 zl ( π1(l) π2(l) ) = ( π̃∗

1(z) π̃∗
2(z) ) is

given by

π̃∗
1(z) =

{
π(0)(I ⊗ D)K̂

′
21 + π̃∗

2(z)(I ⊗ D)K̂21

}
zN 11 (I − zR11)

−1 , (17)

π̃∗
2(z) =

{
π(0)(I ⊗ D)K̂

′
12 + π̃∗

1(z)(I ⊗ D)K̂12

}
zN 22 (I − zR22)−1 . (18)

Remark 1 In our model, J ′, which is the phase set of the MSP when the system is empty, can
be given independently of J1 and J2, which are the phase sets of the MSP when the system is
not empty. Hence we can not always define the ordinary v.g.f. for the stationary queue length.
Here the ordinary v.g.f. π∗(z) is defined as π∗(z) ≡ ∑∞

l=0 zl ( π1(l) π2(l) ) = ( π∗
1(z) π∗

2(z) ).
This is the reason why we use the transforms such as π̃∗

1(z) in Lemma 2. Typical cases where
the ordinary v.g.f. can be defined are Case J1: J ′ = J1 + J2 = J , Case J2: J ′ = J1 and Case
J3: J ′ = J2. In each case, π1(0) and π2(0) are defined as follows.
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• Case J1: We assume that π(0) has the block form π(0) = (π1(0) π2(0) ).

• Case J2: We assume that π1(0) = π(0) and π2(0) = 0�. This means that when the
system is empty, the server’s state is always in the secondary service phases.

• Case J3: We assume that π1(0) = 0� and π2(0) = π(0). This means that when the
system is empty, the server’s state is always in the primary service phases.

Almost all the examples in Section 2 are included in Case J2. Only one exception is the on-off
model, which is included in Case J1. Hence we will mainly investigate Case J2 in the next
section. �

In Lemma 2, equation (18) represents a sort of factorization of the v.g.f. for the steady state
queue length in the MAP/MSP/1 queue. In order to see this point more clearly, we define a
new type of MSP in the case of J ′ = J1 (Case J2 in Remark 1).

• Homogenous type (HM-type): U ′
11 = U11 and U ′

12 = U12.

In an MSP of HM-type, the dimension of S′ is equal to that of S11, and we obtain K̂
′
12 = K̂12.

In the MAP/MSP/1 queue of HM-type, we can, therefore, define the ordinary v.g.f. for the
stationary queue length, π∗(z) = (π∗

1(z) π∗
2(z) ), where π∗

2(z) is given by

π∗
2(z) = π∗

1(z)(I ⊗ D)K̂12zN 22 (I − zR22)−1 . (19)

This equation shows that π∗
2(z) can be factorized into three parts: π∗

1(z), which is the v.g.f.
for the queue length at an arbitrary time during the secondary service, (I ⊗ D)K̂12, which is
a matrix of phase transition rates, and the rest matrix part zN 22 (I − zR22)

−1. In the next
section, we consider two special cases where the rest matrix part has an obvious stochastic
interpretation. An interpretation for the second part is given by the next remark.

Remark 2 As mentioned in Subsection 2.3, [K12](j,i),(j′,i′) is the probability that a sample path
of {Y (t)} starting in the state (l, j, i) ∈ L1(l) for some l ≥ 1 visits L2(l) before entering L(l− 1)
and (l, j′, i′) is the first state visited in L2(l). U11 ⊗ D is the matrix of the phase transition
rates that an arrival occurs and the phases of the MAP and the MSP change in J1 × I, and
U12 ⊗D is the matrix of the phase transition rates that an arrival occurs and the phases change
from J1×I to J2×I. Hence, [(I ⊗D)K̂12](j,i),(j′,i′) is the phase transition rate that the process
{Y (t)} is in the state (l − 1, j, i) ∈ L1(l − 1) for some l ≥ 2 just before an arrival point of time
and, after the point of time, it visits L2(l) before entering L(l− 1) and (l, j′, i′) is the first state
visited in L2(l). Here a “ rate” means the expected number of events occurring in a unit time.

5 Matrix-type Factorizations for MAP/MSP/1 Queues - Two

Special Cases -

5.1 Preliminaries

Consider a MAP/MSP/1 queue, in which the representation of the MSP is (S,T ,U ,S′,T ′,U ′)
and that of the MAP is (C,D). We use the same partition of the phase space J as used in
Section 2. In this section, we study two special cases where R22 becomes the rate matrix of
another MAP/MSP/1 queue, called a base model: one is the case where the MSP is of EX-type
and the other is the case where it is of NP-type. In these cases, an obvious interpretation is
obtained for the matrix part zN 22(I − zR22)−1 in the equation (18).
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Let the representation of the MSP of the base model be (S0,T 0,U0,O,T 0,U 0). S0, T 0 and
U0 will be specified in each case. The representation of the MAP in the base model is the same
as that of the original model. Let π0 = (π0(l)) denote the stationary queue length distribution
in the base model and R0 the rate matrix. R0 is given by R0 = (U0 ⊗ D)N 0, where N0 is
the non-negative matrix corresponding to N of the original model. π0 is given by the matrix
geometric solution

π0(l) = π0(0)(U0 ⊗ D)N0R
l−1
0 , l ≥ 1, (20)

and its transform is given by

π̃∗
0(z) ≡

∞∑
l=1

zlπ0(l) = π0(0)(I ⊗ D)(U0 ⊗ IA)zN 0(I − zR0)−1. (21)

For the base model, the ordinary v.g.f. of the stationary queue length can be defined, and it is
given by π∗

0(z) ≡ ∑∞
l=0 zlπ0(l) = π0(0) + π̃∗

0(z).

5.2 The Case of Exhaustive Service Type (EX-Type)

5.2.1 General model

Here we consider the MSP of EX-type, i.e., S21 = O, T 21 = O and U 21 = O. In this case,
how to specify the base model is trivial; it is the MAP/MSP/1 queue in which S0, T 0 and U0

are given by S0 = S22, T 0 = T 22 and U 0 = U22. If the original model is stable, the base
model is also stable. From the definition of EX-type, it is obvious that K21 = O and this leads
us to K̂

′
21 = U ′

11 ⊗ I and K̂21 = O. Furthermore, once the server’s state enters one of the
primary service phases, the state transition of the server is governed by S22, T 22 and U22 until
the system becomes empty. Hence we obtain N22 = N 0 and this leads us to R22 = R0. As a
result, the non-negative matrix N and the rate matrix R are given by

N =
(

N11 K12N 0

O N0

)
, R =

(
R11 (I ⊗ D)K̂12N0

O R0

)
, (22)

where R11 = (U11 ⊗ D)N11, R0 = (U 0 ⊗ D)N0 and K̂12 = (U11 ⊗ I)K12 + (U12 ⊗ I).
Let π = ( π(0) π(1) ... ) be the stationary distribution of the original model, where π(l) =
( π1(l) π2(l) ) , l ≥ 1. From Lemma 2, we obtain the next lemma.

Lemma 3 In the MAP/MSP/1 queue of EX-type, π̃∗
1(z) is given by

π̃∗
1(z) = π(0)(U ′

11 ⊗ D)zN 11(I − zR11)−1, (23)

and π̃∗
2(z) is given by

π̃∗
2(z) =

{
π(0)(I ⊗ D)K̂

′
12 + π̃∗

1(z)(I ⊗ D)K̂12

}
zN 0(I − zR0)−1, (24)

where K̂
′
12 = (U ′

11 ⊗ I)K12 + (U ′
12 ⊗ I). �

Remark 3 The matrix part zN 0(I − zR0)−1 in equation (24) is represented as

zN 0(I − zR0)−1 =
∞∑
l=1

zlN 0R
l−1
0 .

Let {Y0(t)} = {(L0(t), J0(t), I0(t))} be the QBD process representing the behavior of the base
model, where L0(t) is the number of customers in the system at time t, J0(t) the phase of the
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MSP and I0(t) the phase of the MAP. [N0R
l−1
0 ](j,i)(j′,i′) is the mean sojourn time of the process

{Y0(t)} in the state (l, j′, i′) during a busy period starting in the state (1, j, i). This leads us
to a stochastic interpretation for the matrix part in the equation (24). Let A be defined by
A = diag(N0(I − R)−1e), where diag(a) is the diagonal matrix whose diagonal elements are
those of vector a. Then, [A−1N0R

l−1
0 ](j,i)(j′,i′) is the conditional probability that the queue

length in the base model is l and the phase processes are in the state (j′, i′) at an arbitrary time
during a busy period given that the busy period has started in the state (1, j, i). Hence the matrix
A−1zN 0(I − zR0)−1 is the m.g.f. for the queue length at an arbitrary time during the busy
period. �

Remark 4 If the MSP is of VA-type, the number of customers in the system never decreases
whenever the server’s state is in the secondary service phases. Hence, K̂12 and K̂

′
12 become

stochastic. �

If the MSP is of HM-type, i.e., U ′
11 = U11 and U ′

12 = U12, then it is included in Case J2 in
Remark 1 and we have K̂

′
12 = K̂12. Hence we obtain

π∗
1(z) = π(0)(I − zR11)−1, (25)

π∗
2(z) = π̃∗

2(z) = π∗
1(z)(I ⊗ D)K̂12zN 0(I − zR0)−1. (26)

Let ρ2 be defined by ρ2 = π∗
2(1)e, Y 1(z) by Y 1(z) = π∗

1(z)
1−ρ2

, and Y 2(z) by Y 2(z) = π∗
2(z)
ρ2

.
Y 1(z) is the v.g.f. for the stationary queue length when the server’s state is in the secondary
service phases, and Y 2(z) is that for the stationary queue length when the server’s state is
in the primary service phases. From equation (26), we also obtain the following matrix-type
factorization.

Y 2(z) = Y 1(z)(I ⊗ D)K̂12
1 − ρ2

ρ2
zN 0(I − zR0)−1 (27)

Remark 5 Comparing equation (26) with equation (21), we can obtain an interpretation for
equation (26) as follows: equation (26) has the same form as equation (21), where π0(0) in
equation (21) is replaced with π∗

1(z) in equation (26) and (U0 ⊗ IA) with K̂12. �

5.2.2 I.i.d. PH-type (IID-type) service model

We further assume that the MSP of the original model is also of IID-type, where the represen-
tation of the service time distribution is given by (B2,β2) (see the block forms of (6)). Let K̃12

be defined by K̃12 = K12(e2 ⊗ IA). [K̃12](j,i),i′ is the probability that a sample path of {Y (t)}
starting in the state (l, j, i) ∈ L1(l) for some l ≥ 1 visits L2(l) before entering L(l − 1) and the
first state visited in L2(l) is in {(l, j′, i′); j′ ∈ J2}. Since every service begins with the initial
distribution β2, K12 is given by K12 = K̃12(β2 ⊗ I). Hence we obtain

π̃∗
2(z) =

{
π(0)(I ⊗ D)Ã

′
+ π̃∗

1(z)(I ⊗ D)Ã
}

(β2 ⊗ IA)zN 0(I − zR0)−1, (28)

where Ã = (U 11 ⊗ I)K̃12 + (u11 ⊗ I) and Ã
′
= (U ′

11 ⊗ I)K̃12 + (u′
11 ⊗ I). In this case, the

base model becomes a MAP/PH/1 queue.
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5.2.3 Poisson arrival and i.i.d. PH-type (IID-type) service model

Here we further assume that the arrival process is Poissonian with intensity λ. In this case, K12

is given by K12 = k12β2, where k12 is a substochastic column vector. The base model becomes
an M/PH/1 queue. From equations (23) and (28), we obtain

π̃∗
1(z) = π(0)zλU ′

11N 11(I − zR11)−1, (29)

π̃∗
2(z) =

{
π(0)(U ′

11k12 + u′
11) + π̃∗

1(z)(U11k12 + u11)
}

β2zR0(I − zR0)−1, (30)

where R11 = λU 11N 11 and R0 = λN 0. Let ρ0 denote the traffic intensity of the base model;
ρ0 is given by ρ0 = λβ2(−B2)−1e. π̃∗

0(z) and π∗
0(z) are given by

π̃∗
0(z) = (1 − ρ0)β2zR0(I − zR0)−1,

π∗
0(z) = (1 − ρ0)β2(I − zR0)−1.

In terms of π̃∗
0(z), π̃∗

2(z) is given by

π̃∗
2(z) =

{
π(0)(U ′

11k12 + u′
11) + π̃∗

1(z)(U11k12 + u11)
} π̃∗

0(z)
1 − ρ0

. (31)

If the MSP is of HM-type, i.e., U ′
11 = U11, then we obtain

π∗
1(z) = π(0)(I − zR11)−1,

π∗
2(z) = π∗

1(z)(U11k12 + u11)
π̃∗

0(z)
1 − ρ0

.

Furthermore, if U11 = I then u11 = 0, and we obtain

π∗
2(z) = π∗

1(z)k12
π̃∗

0(z)
1 − ρ0

.

Let L be a random variable being subject to the stationary queue length distribution at an
arbitrary time in the original model and let π∗(z) be defined by π∗(z) = E[zL]. Then, we obtain

π∗(z) = π∗
1(z)e1 + π∗

2(z)e2 = π∗
1(z)(e1 − k12) + π∗

1(z)k12
π∗

0(z)e2

1 − ρ0
. (32)

In this formula, k12 is the column vector of the probabilities that the server can begin primary
service in a non-empty period. Here we define a non-empty period as the interval between a
time point when a customer arrives at the system of empty state and the time point when
the system becomes empty again. Equation (32) can, therefore, be recognized as a conditional
stochastic decomposition for the stationary queue length. Note that the case of U ′

11 = U11 = I
includes the M/PH/1 queue with exceptional services and that with preemptive-repeat working
vacations. If the MSP of the original model is of VA-type, k12 becomes stochastic, i.e., k12 = e,
and we obtain the ordinary (unconditional) stochastic decomposition.

5.3 The Case of Nonpreemptive Service Type (NP-Type)

Here we consider the MSP of NP-type, i.e., S21 = O, U21 = O and U22 = I. In this case, how
to specify the base model is not trivial. Let S0 and U0 be set at S22 and I, respectively, and let
T 0 be temporally set at an arbitrary non-negative matrix satisfying (S0 +T 0)e = 0. In general,
since K21 is nonzero, we cannot take the same approach as used in the previous subsection.

Let G be the fundamental matrix of the original model, i.e., [G](j,i)(j′,i′) is the probability
that a sample path of {Y (t)} starting in the state (l + 1, j, i) for some l ≥ 1 visits L(l) and
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(l, j′, i′) is the first state visited in L(l). Since {Y (t)} is a QBD process, G is stochastic and is
given by G = N (T ⊗ I). According to the partition of J , G has the block form

G =
(

G11 G12

G21 G22

)
.

Let G′
22 be defined as G′

22 = G22 + G21K12. [G′
22](j,i)(j′,i′), j, j′ ∈ J2, is the probability that a

sample path of {Y (t)} starting in the state (l + 1, j, i) for some l ≥ 1 visits L2(l) before entering
L(l − 1) and (l, j′, i′) is the first state visited in L2(l). N 22 satisfies

N 22 = (−S22 ⊕ C)−1 + (−S22 ⊕ C)−1(I ⊕ D)G′
22N 22. (33)

On the other hand, in the base model, N 0 satisfies

N 0 = (−S22 ⊕ C)−1 + (−S22 ⊕ C)−1(I ⊕ D)G0N 0, (34)

where G0 is the fundamental matrix of the base model. Hence, if G′
22 = G0 then N 22 = N0. It

seems difficult to obtain general conditions on which G′
22 = G0 hold. One sufficient condition

but trivial one is that the arrival process is Poissonian with intensity λ and the MSP of the
original model is of NP, IID and VA-type. In that case, letting T 0 be set at b2β2, we obtain
G′

22 = G0 = eβ2. The base model becomes an M/PH/1 queue, and we obtain the next lemma.

Lemma 4 If the arrival process is Poissonian and the MSP of the original model is NP, IID
and VA-type, we obtain

π̃∗
2(z) =

π∗
1(z)

1 − ρ0
π̃∗

0(z), (35)

where π∗
1(z) = π(0)e′ + π̃∗

1(z)e1. Let L be a random variable being subject to the stationary
queue length distribution at an arbitrary time in the original model, and let π∗(z) be defined by
π∗(z) = E[zL]. From equation (35), π∗(z) is given by

π∗(z) = π(0)e′ + π̃∗
1(z)e1 + π̃∗

2(z)e2 =
π∗

1(z)
1 − ρ0

π∗
0(z)e2. (36)

�

Remark 6 In Lemma 4, T 21 can be arbitrary set as long as it satisfies T 21e + t22 = b2. This
means that the length of a vacation may depend on the service phase in which the preceding
service has just ended. �

Equation (36) corresponds to the stochastic decomposition for the stationary queue length
in the M/G/1 queue with generalized vacations, derived by Fuhrmann & Cooper [9].

6 Computation of Stationary Queue Length Distribution and
Numerical Examples

In Section 4 we showed that, in the MAP/MSP/1 queue of HM-type, π∗
2(z) was factorized into

three parts (cf. equation (19)), and in Section 5 we presented two special cases where the third
part of π∗

2(z) was given by another MAP/MSP/1 queue called a base model. Taking account
of those results, we here discuss computation of the stationary queue length distribution in
the MAP/MSP/1 queue of EX-type and give some numerical examples. Since the stochastic
decomposition that we obtained for a MAP/MSP/1 queue of NP-type (cf. Lemma 4) corresponds
to that derived in Ref. [9], we do not mention it in this section. Note that, since the behavior of
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a MAP/MSP/1 queue is represented as a QBD process, the stationary queue length distribution
of the MAP/MSP/1 queue is given by the matrix-geometric solution and the rate matrix can be
directly calculated by using the existing algorithms [13]. However, for the MAP/MSP/1 queue
of EX-type, we can separately calculate each block of the rate matrix according to the matrix
type factorization.

6.1 Computation for the MAP/MSP/1 Queue of EX-Type

For simplicity, we here deal with a MAP/MSP/1 queue in which the MSP is of EX and HM-
type, and use notations described in Subsection 5.2. The results below can easily be extended
to a MAP/MSP/1 queue whose MSP is of EX-type but not HM-type. When the MSP is of
EX and HM-type, π∗

1(z) is given by equation (25) and π∗
2(z) by equation (26), where π∗

2(z) is
factorized into π∗

1(z), (I ⊗ D)K̂12 and zN 0(I − zR0)−1. To apply these equations, we need
to know the values of π(0), N 11, N 0 and K12; the values of R11, R0 and K̂12 are obtained
from those of N11, N 0 and K12, respectively. N 0 is obtained from the base model of the
original MAP/MSP/1 queue. Since the base model is also a MAP/MSP/1 queue, the value of
N 0 (= N 22) is given by the minimal non-negative solution of the following equation of X.

(U 22 ⊗ D) + (U 22 ⊗ D)X(S22 ⊕ C) +
(
(U22 ⊗ D)X

)2
(T 22 ⊗ I) = O

Hence we can use existing algorithms for calculating the value of N 0. N 11 is obtained by
analyzing a certain Markov chain of GI/M/1-type (referred as Submodel 1) and its value is also
given by the minimal non-negative solution of the following equation of X.

(U 11 ⊗ D) + (U 11 ⊗ D)X(S11 ⊕ C) +
(
(U11 ⊗ D)X

)2
(T 11 ⊗ I) = O

As a result, the values of N 0 and N 11 can independently obtained from the base model and
Submodel 1, respectively. However, K12 is the matrix of the probabilities that connect the base
model and Submodel 1 (cf. Remark 2) and we have to consider them at one time in order to
obtain the value of K12.

The value of K12 can be obtained as follows. Consider the fundamental matrix G of the
original model, which has the block form

G =
(

G11 G12

O G22

)
.

Since G is represented as G = N (T ⊗ I), its blocks are given by

G11 = N 11(T 11 ⊗ I), G22 = N0(T 22 ⊗ I), G12 = N 11(T 12 ⊗ I) + K12G22.

Considering the first transition of Y (t) from L1(l) to the outside of L1(l), we obtain the following
equation of K12:

K12 = P 1 + P 2G22 + P 3

(
G11K12 + G12

)

= P 1 + P 2G22 + P 3N 11(T 12 ⊗ I) + P 3

(
G11K12 + K12G22

)
, (37)

where P 1 = (−S11 ⊕ C)−1(S12 ⊗ I), P 2 = (−S11 ⊕ C)−1(U 12 ⊗ D) and P 3 = (−S11 ⊕
C)−1(U 11 ⊗ D). On the right hand side of the first line of equation (37), the first term corre-
sponds to the case where a sample path of {Y (t)} starting in L1(l) leaves L1(l) and the first
state visited in the outside of L1(l) is in L2(l), the second term to the case where that state is
in L2(l + 1) and the third term to the case where that state is in L1(l + 1). From equation (37),
the value of K12 is given by the minimal non-negative solution of the following equation of X.

X = P 1 + P 2G22 + P 3N 11(T 12 ⊗ I) + P 3

(
G11X + XG22

)
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The solution can be numerically obtained by iteration with the initial value of X = O. The
value of π(0) is obtained by solving equations (4) and (5).

Remark 7 Since G11 + G12 and G22 are stochastic, we obtain

(G11 + G12)e = G11e + N 11(T 12 ⊗ I)e + K12e = e.

This leads us to

K12e =
(
I − G11 − N 11(T 12 ⊗ I)

)
e,

and hence K12e is represented in terms of N 11. As mentioned in Subsection 5.2, in the case
where the arrival process is Poissonian and the MSP is of EX and IID-type, K12 is given as
K12 = K12eβ2 = k12β2. Hence, in that case, the values of K12 is given by the product of
two terms, k12 and β2, which are independently obtained from Submodel 1 and the base model,
respectively.

6.2 Numerical Examples

Here we show some numerical examples for a preemptive-resume working vacation model and
for an exceptional service model presented in Subsection 2.4. Since the MSPs of both the models
are of EX and HM-type, we can numerically obtain the stationary queue length distribution by
using the method described in the previous subsection.

Consider a MAP whose representation (C,D) is given by

C =
(−(γ1 + λ1) γ1

γ2 −(γ2 + λ2)

)
, D =

(
λ1 0
0 λ2

)
.

This MAP is a Markov modulated Poisson process (MMPP) and its mean arrival rate λ̄ is given
by λ̄ = (γ1λ2 + γ2λ1)/(γ1 + γ2). We use this MAP in both the models. In the working vacation
model, let vacation times be subject to a 2-Erlang distribution with mean h1 and ordinary
service times to another 2-Erlang distribution with mean h2. Hence we have

Bi =
(−2/hi 2/hi

0 −2/hi

)
, i = 1, 2, β1 = β2 = ( 1 0 ) .

We denote by c the ratio of service speed in the working vacation model. In the exceptional
service model, we assume that at most two customers firstly arriving in each busy period receive
different service from that received by other customers (i.e. k = 2). Let the service times of the
first and second customers be subject to a common 2-Erlang distribution with mean h′

1. Then
we have

B1i =
(−2/h′

1 2/h′
1

0 −2/h′
1

)
, i = 1, 2, β11 = β12 = ( 1 0 ) .

Let the service times of other customers be subject to the same distribution as that used for
ordinary service times in the working vacation model.

Figure 1 shows the queue length distributions of the models, where the values of π(l)e, l =
0, 1, ..., 50, are plotted on each graph. The parameters of the MAP are set as γ1 = 1

2 , γ2 = 4
5 ,

λ1 = 1
2 and λ2 = 3

2 , and we obtain λ̄ = 23
26 . The mean ordinary service time is set as h2 = 1. The

traffic intensity ρ defined as ρ = λ̄h1 is equal to 23
26 . In the working vacation model, h1 is set at

10 and the ratio of service speed, c, takes values in {0, 2
5 , 4

5 , 1}. When c = 0, the model becomes
an MMPP/E2/1 queue with multiple vacations; when c = 1, it becomes an MMPP/E2/1 queue
without vacations. From Fig. 1 (a), we can see how the ratio of service speed influences the
queue length distribution. In the exceptional service model, the mean service time of the first
and second customers, h′

1, takes values in {1, 5, 10}. When h′
1 = 1, the model becomes an

ordinary MMPP/E2/1 queue. From Fig. 1 (b), we can also see how the value of h′
1 influences

the queue length distribution.
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Figure 1: Queue length distributions.

7 Conclusions

We studied MAP/MSP/1 queues and obtained a new sort of matrix-type factorization of the
vector generating function for the stationary queue length. The MAP/MSP/1 queue is a very
tractable model since its behavior is represented as a quasi-birth-and-death process. Further-
more, the MAP/MSP/1 queue can represent various queueing models such as vacation models,
N -policy models and exceptional service models. Hence there is a great advantage in using it as
a fundamental model for analyzing queueing models with various service disciplines. One exten-
sion of the MAP/MSP/1 queue is a model in which the arrival process is governed by another
MAP when the system is empty. In the case of Poisson arrival, such a model was studied in
Refs [6, 18]. Our results would also hold in that extended model.
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