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Abstract

In this paper, we propose a method to obtain upper and lower bounds of call comple-
tion probabilities in a mobile communication network having a large number of base stations.
Each base station has its own zone where its radio wave reaches. These zones are overlapping
with neighboring zones, and handovers become possible. However, the existence of overlap-
ping zones makes the analysis of a network difficult. To overcome this difficulty, we introduce
two smaller size models and show that the upper and lower bounds can be represented in
terms of certain performance measures obtained from the smaller size models. Using our
method, we can get the values of the bounds by standard methods such as simulation with
less computational burden, where the tightness of the bounds can be controlled by choosing
a set of focused base stations with appropriate size.
keyword: Mobile communication network, call completion probability, Markov chain, sample
path argument, stochastic comparison

1 Introduction

In this paper, we deal with a mobile communication network having a large number of base
stations. Each base station has its own zone where its radio wave reaches. Users can make calls
within zones and moreover may try to move from a zone to another with keeping their talks on
the calls. From the viewpoint of the system, this mechanism is referred as handover between
base stations. The handovers become possible because zones of base stations are overlapping.
However, the existence of overlapping zones makes the analysis of a network much difficult,
because the behavior of calls in a base station affects the others in the network.

In Ref. [11], we have proposed a method to evaluate performance measures in such a mobile
communication network. There, first we modeled the whole system as a large-scale Markov
chain. Then we applied the aggregation method to derive an aggregated process that described
the stochastic behavior of a smaller model in which only a certain number of base stations
were focused and others were unfocused or ignored. Tight upper and lower bounds of various
performance measures were derived from the smaller model. One remarkable result of that paper
(Theorem 2 of Ref. [11]) is that upper and lower bounds of some performance measures can be
obtained by using two particular models; one is the model corresponding to the original one
under the situation that all the unfocused base stations are always full (this model is referred as
Model 1), and the other is the model corresponding to the original one under the situation that
all the unfocused base stations are idle at all times (this model is referred as Model 2). This
result enables us to obtain the bounds numerically or by simulation with less computational
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burden. However, performance measures that we can evaluate in that manner are restricted to
a certain class of performance measures. For example, call loss probabilities are included in the
class but call completion probabilities, which we want to evaluate in this paper, are not.

The aim of this paper is to show that upper and lower bounds of call completion probabilities
are given in terms of certain performance measures obtained from models 1 and 2 mentioned
above. The call completion probability is one of the most important measures since, in mobile
communication networks, calls having started their talks may forcibly be terminated because
of unsuccessful handovers and such call terminations are very unpleasant for users. For the
purpose, we take an approach different from that taken in the previous paper; while in the
previous paper we used the aggregation method, the weak D-Markov chain (Markov set-chain)
theory [2, 12] and the Markov decision theory [4, 9] as mathematical tools, in this paper we use
sample path arguments and comparison methods for stochastic models [7].

Steps of our analysis are as follows. First we construct Markov chains representing the
behaviors of the original model, Model 1 and Model 2 on a common probability space, where
the state of each model is represented as a random vector whose kth element is the number of calls
served at base station k. We show that the states of the Markov chains satisfy certain monotone
properties. From the monotone properties and the Markov chain convergence theorem, it is
derived that the ordinary stochastic order holds between the states of the chains in steady state.
This result corresponds to Theorem 2 of Ref. [11]. Furthermore, studying the Markov chains,
we derive certain monotone properties for the conditional call-completion probabilities when the
initial states of the chains are given. Upper and lower bounds of call completion probabilities are
obtained by using these monotone properties, and they can easily be estimated by simulation.

Here we would shortly mention related works. Hong and Rappaport [3] proposed models
for a single base station capturing handover mechanisms, and derived algorithms to evaluate
performance measures. Ohmikawa and Takagi [8] and Takagi, Sakamaki and Miyashiro [10] dealt
with similar models to [3], but they further considered a local network to make the evaluations
more accurate. Mcmillan [6] proposed models capturing handover mechanisms and assignment
mechanisms. Lagrange and Jabbari [5] gave a model with call generations in a zone with
some overlapping areas to neighboring zones, and described assignment mechanisms for them.
However, all of these papers cited above considered only a single base station or a local network.
Hence their results are somewhat approximations and accuracy of them is not known. There
are some other papers that considered the whole network as Everitt [1], but their models are
too simple for practical applications.

The rest of the paper is constructed as follows. In Section 2 a mobile communication network
that we concern is described. Section 3 is the central part of the paper. In Subsection 3.1, we
define two models (Model 1 and Model 2) and state the main theorem that gives upper and lower
bounds of call completion probabilities. Lemmas needed to prove the theorem are prepared in
Subsections 3.2 and 3.3, and the proof of the theorem is presented in Subsection 3.4. In Section
4 we show some numerical results and in Section 5 we conclude the paper with a brief summary.

2 Model description

2.1 Zones and areas

Here we present our model of a mobile communication network [11]. There are N base stations
in the network and they are labeled from 1 to N . Each base station has its own zone. The
zone of base station k is referred as zone k. The area that is covered with zone k only is called
area k, and the area where zone k and zone l overlap is called area (k, l) (see Fig. 1). Area
(l, k) is the same area as area (k, l). For simplicity, we assume that there are no areas where
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three or more zones overlap. Let A = {k : 1 ≤ k ≤ N} be the index set of base stations and
B = {(k, l) : k, l ∈ A, k �= l, zone k overlaps with zone l} the index set of overlapping areas.
For k ∈ A, let C(k) = {l : (k, l) ∈ B} be the index set of zones overlapping with zone k.

Figure 1: Area k and area (k, l).

Remark 1 We have assumed that there exist no areas where three or more zones overlap. We
make this assumption from the following two reasons. First, in many mobile communication
systems, users (mobile stations) receive at most two strongest radio waves among various waves
from various base stations. Our model imagines such a situation. The second reason is a
technical one. If we allow areas where three or more zones overlap, the model and analysis
become very complicated. We have to introduce a new assignment scheme for handover calls and
newly generated calls in such an area, and the proof of monotone properties we use in this paper
would become tremendously difficult, even if it is not impossible.

On the other hand, we have not put restrictions on the configuration of the network. A
typical configuration is a hexagon model shown in Fig. 2 in Section 4. But our model is not
restricted to it. The number of neighboring base stations may be different among base stations,
and parameters (except for call holding times) may be different among areas and base stations.

2.2 Channels and calls

Base station k ∈ A has ck channels among which gk channels are reserved for handover calls as
guard channels (0 ≤ gk ≤ ck). Calls behave in the following manner.

(1) Call generation. New calls are generated in area k ∈ A according to a Poisson process with
parameter λk, and in area (k, l) ∈ B according to a Poisson process with parameter λ(k,l).
(Of course we assume that λ(k,l) = λ(l,k).)

(2) Channel assignment for new calls. When a new call is generated in area k ∈ A, it is served
at base station k if more than gk channels are idle. If not, it is rejected. When a new
call is generated in area (k, l) ∈ B, base station k or base station l is selected with equal
probability. Suppose that base station k is selected. Then the call is served at base station
k if more than gk channels are idle. If not, base station l is reselected. The call is served
at base station l if more than gl channels are idle. If not, it is rejected. If a call is rejected
from the first selected base station, it is referred as an overflow call.

(3) Call holding times. Call holding times (lengths of talks) are exponentially distributed ran-
dom variables with parameter μ irrespective of areas in which they are generated and base
stations at which they are served.

3



(4) Call residence times. Call residence times in base station k are exponentially distributed
random variables with parameter γk. If the holding time of a call served at base station
k ends before the residence time is over, then the call leaves the system. We refer such a
call as a completed call. If the residence time is over before the holding time ends, then
the call tries to move to a neighboring base station in C(k). At that time the call selects
base station l in C(k) with probability pk,l. We denote by γk,l = pk,lγk, the rate at which
a call in base station k is handed over to base station l.

(5) Channel assignment for handover calls. When a call in base station k is handed over to base
station l, it is served in base station l if there exists an idle channel in base station l. In
this case the handover is said to be successful. If not, the call is forcibly terminated. In
this case the handover is said to be unsuccessful.

Call generation processes, call holding times, call residence times, selections of first assigned
base stations, and selections of handover destinations are assumed to be mutually independent.

2.3 Markov chain model

We denote by Xk(t) the number of calls (active channels) in base station k at time t. Since our
model is Markovian, Xk(t) represents the state of base station k. The state of the whole network
is represented as a vector X(t) = (X1(t),X2(t), · · · ,XN (t)). It is easily seen that {X(t)} forms
a Markov chain on the state space S = {(x1, x2, · · · , xN ) : 0 ≤ xk ≤ ck, 1 ≤ k ≤ N}. We denote
by Q the transition rate matrix of the chain but here we do not give its precise description [11]
because it is very complicate and we do not use it in this paper.

3 Upper and lower bounds for a call completion probability

3.1 Main theorem

Let θk denote the call completion probability of an arbitrary call whose talk starts at base
station k. Remind that such a call is generated in zone k. Since the model is Markovian, we
may calculate the value of θk by using some standard method. However, the number of states
in S is equal to M =

∏N
k=1(ck + 1). If N is large, then M becomes tremendously large, and it

is practically impossible to get θk numerically. Even it is not easy to estimate θk by simulation.
To overcome this difficulty, we will introduce two smaller size models called Model 1 and

Model 2. Upper and lower bounds for θk will be given in terms of measures that can be obtained
from Model 1 and Model 2. Let us focus on N0 base stations here, and without loss of generality
we assume that they are labeled from 1 to N0. Other unfocused base stations are labeled
from N0 + 1 to N . Let A0 = {k : 1 ≤ k ≤ N0} be the index set of focused base stations
and A0 = {k : N0 + 1 ≤ k ≤ N} the index set of unfocused base stations. We denote by
S0 = {(s1, s2, · · · , sN0) : 0 ≤ sk ≤ ck, 1 ≤ k ≤ N0} the set of possible states for base stations in
A0. Model 1 corresponds to the original model under the situation that all the unfocused base
stations are always full, and Model 2 corresponds to the original model under the situation that
all the unfocused base stations are always idle. Since the states of the unfocused base stations
are fixed in both Model 1 and Model 2, the state space of each model becomes S0. The number
of states in S0 is equal to M0 =

∏N0
k=1(ck + 1), and usually it is far smaller than M .

Let B0 = {(k, l) : k, l ∈ A0, k �= l, zone k overlaps with zone l} be the index set of over-
lapping areas between the zones of the focused base stations. For k ∈ A0, let C(k)

0 = A0 ∩ C(k)

be the index set of focused base stations whose zones overlap with that of base station k and
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C(k)
0 = A0 ∩ C(k) the index set of unfocused base stations whose zones overlap with that of base

station k. Precise descriptions of Model 1 and Model 2 are as follows.

• The set of base stations in each model is A0 and that of overlapping areas is B0. Calls
in areas indexed in A0 and B0 behave as in the original model. In Model 1, new calls
generated in area (k, l), k ∈ A0, l ∈ A0, are all regarded as new calls generated in area
k. On the other hand, in Model 2, a half of such new calls are regarded as new calls
generated in area k since the other half will be immediately served in base station l ∈ A0.
This requires a change in the call generation rate in area k ∈ A0. Handover calls from
base stations in A0 to those in A0 are regarded as forcibly terminated calls in Model 1,
and as completed calls in Model 2. For k ∈ A0, we denote by γ′

k,∞ the rate at which calls
served at base station k move to other base stations in A0. In Model 1, there are handover
calls from base stations in A0 to those in A0. For k ∈ A0, the total rate at which such
handovers to base station k occur is denoted by Γ′

∞,k.

• Parameters of Model 1 and Model 2 are set as follows. They are represented with primes
(’) to distinguish from the parameters of the original model. For k ∈ A0,

λ′
k =

{
λk +

∑
j∈C(k)

0

λ(j,k) for Model 1,

λk + 1
2

∑
j∈C(k)

0
λ(j,k) for Model 2,

Γ′
∞,k =

∑
l∈C(k)

0

clγl,k,

λ′
(k,l) = λ(k,l), l ∈ C(k)

0 , μ′ = μ, γ′
k,l = γk,l, l ∈ C(k)

0 , γ′
k,∞ =

∑
l∈C(k)

0

γk,l .

For Model m (m ∈ {1, 2}), we denote by X
[m]
k (t) the number of calls in base station k at

time t. Since our model is Markovian, X
[m]
k (t) represents the state of base station k. The state

of the whole network is represented as a vector X [m](t) = (X [m]
1 (t), · · · ,X

[m]
N0

(t)). It is easily
seen that {X [m](t)} forms a Markov chain on the state space S0. In the following sections, we
refer to the original model as Model 0 and X(t) as X [0](t).

In steady state, for Model m (m ∈ {0, 1, 2}), let X
[m]
k denote the number of calls in base

station k and X [m] denote a vector (X [m]
k , k ∈ A[m]), where A[0] = A and A[1] = A[2] = A0. We

define P [m](x), P̄
[m]
k (xk) and P̄

[m]
k,l (xk, xl) as P [m](x) = Pr(X [m] = x), P̄

[m]
k (xk) = Pr(X [m]

k ≥
xk) and P̄

[m]
k,l (xk, xl) = Pr(X [m]

k ≥ xk, X
[m]
l ≥ xl), respectively. We also define the following

measures for k ∈ A0.

• ζ
[m]
k , m ∈ {0, 1, 2}: the probability in Model m that an arbitrary call generated in area k

starts its talk (holding time) at base station k and successfully completes the talk at some
base station.

• ξ
[m]
(k,l), m ∈ {0, 1, 2}: the probability in Model m that an arbitrary call generated in area

(k, l) finds less than cl − gl calls in base station l, first selects base station k, starts its
talk (holding time) at the base station, and successfully completed the talk at some base
station. Note that, for m ∈ {1, 2}, ξ

[m]
(k,l) is undefined when l ∈ C(k)

0 .

Upper and lower bounds for θk are given in the next theorem.
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Theorem 1 For k ∈ A0, let θlower
k and θupper

k be defined as

θlower
k =

Λkζ
[1]
k −

(∑
l∈C(k)

0

λ(k,l)ξ
[2]
(k,l) + 1

2

∑
l∈C(k)

0

λ(k,l)ζ
[2]
k

)
(
λk + 1

2

∑
l∈C(k)

0
λ(k,l) +

∑
l∈C(k)

0
λ(k,l)

)(
1 − φ

[2]
k

)
+ 1

2

∑
l∈C(k)

0
λ(k,l)

(
φ

[1]
l − φ

[2]
(k,l)

) ,

(1)

θupper
k =

Λkζ
[2]
k − ∑

l∈C(k)
0

λ(k,l)ξ
[1]
(k,l)(

λk + 1
2

∑
l∈C(k) λ(k,l)

) (
1 − φ

[1]
k

)
+ 1

2

∑
l∈C(k)

0

λ(k,l)

(
φ

[2]
l − φ

[1]
(k,l)

) , (2)

where Λk = λk +
∑

l∈C(k) λ(k,l), φ
[m]
k = P̄

[m]
k (ck − gk) and φ

[m]
(k,l) = P̄

[m]
k,l (ck − gk, cl − gl). Then, θk

satisfies the following inequality.

θlower
k ≤ θk ≤ θupper

k (3)

Remark 2 To apply formulas (1) and (2), we need to know the values of φ
[m]
k , φ

[m]
(k,l), ζ

[m]
k and

ξ
[m]
(k,l), m = 1, 2. Call loss probabilities φ

[m]
k and φ

[m]
(k,l), m = 1, 2, are calculated from the steady

state probabilities of Model m, and their values are easily obtained from numerical analysis or
simulation. For call completion probabilities ζ

[m]
k and ξ

[m]
(k,l), m = 1, 2, it seems difficult to get

their values from numerical analysis, and hence we have to use simulation. Fortunately, the
size of Model m is not so large, we can easily accomplish a simulation to estimate them. In the
numerical examples shown in Section 4, we use simulation.

In order to prove Theorem 1, we prepare some lemmas in the next two subsections. The
proof of Theorem 1 will be given in Subsection 3.4.

3.2 Monotone properties for the models

Here we will present some monotone properties for the Markov chains {X [m](t)}, m = 0, 1, 2,
defined in the previous subsection. For the purpose, first we introduce sequences of independent
random variables, and using them we construct Markov chains {X̂ [m]

(t) = (X̂ [m]
k (t), k ∈ A[m])},

m = 0, 1, 2, on a common probability space (Ω,F , P ) such that, for m ∈ {0, 1, 2}, the state

transitions of the Markov chain {X̂ [m]
(t)} and those of {X [m](t)} obey the same probability

law, i.e., they are governed by the same transition rate matrix.
We introduce sequences of interarrival times, call holding times, call residence times, selec-

tions of base stations at generations of calls in overlapping areas and selections of destination
base stations at handovers in the original model. Since these random variables are mutually
independent and random variables representing times are exponentially distributed, we may
consider from the strong Markov property that the processes restart at every epoch of state
transition in stochastic sense. This allows us to regenerate these random variables at every
transition epoch without changing the probability law of the processes.

A precise construction of the sequences of random variables is as follows. Indices k, l, ik
and n used below are for k ∈ A, l ∈ C(k), ik ∈ [1, ck] and n ≥ 1. Let τk(n) be an exponentially
distributed random variable with parameter λk. τk(n) is used for determining a call generation
epoch in area k. Let τ(k,l)(n) denote an exponentially distributed random variable with parame-
ter λ(k,l) and j(k,l)(n) denote a randomly selected base station from {k, l} with equal probability.
The pair (τ(k,l)(n), j(k,l)(n)) is used for determining a call generation epoch in area (k, l) and
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the first selected base station by the call. Let sk,ik(n) denote an exponentially distributed ran-
dom variable with parameter μ. sk,ik(n) is used for determining the remaining service time of
a call at channel ik of base station k. We use a vector representation sk(n) = (sk,ik(n)) for
them. Let ηk,ik(n) denote an exponentially distributed random variable with parameter γk and
dk,ik(n) denote a randomly selected base station from C(k) with probabilities (pk,l, l ∈ C(k)).
The pair (ηk,ik(n), dk,ik(n)) is used for determining the remaining residence time of a call at
channel ik of base station k and the base station to which the call is handed over. We use a
vector representation ηk(n) = ((ηk,ik(n), dk,ik(n))) for them. We assume that all these random
variables and random selections of base stations are mutually independent. To the basic proba-
bility space (Ω,F , P ), we define Ω as the set of possible realizations of the sequences of random
variables {τk(n), (τ(k,l)(n), j(k,l)(n)),sk(n),ηk(n), k ∈ A, l ∈ C(k)}∞n=1 and assume that F and P
are properly defined such that the sequences of random variables have the properties described
above.

We define a sequence of inter-transition times {T (n)} as

T (n) = min{τk(n), τ(k,l)(n), sk,ik(n), ηk,ik(n) : k ∈ A, l ∈ C(k), ik ∈ [1, ck]}, (4)

and a sequence of transition times as t0 = 0 and

tn =
n∑

m=1

T (m) (5)

for n ≥ 1. We consider tn is the nth transition epoch of the chains and, in each chain, the
random variable attaining the minimum in (4) indicates the kind of transition at that time.
Namely, if T (n) = τk(n), a call is generated in area k at time tn; if T (n) = τ(k,l)(n), a call is
generated in area (k, l) at time tn and first base station j(k,l)(n) is selected; if T (n) = sk,ik(n),
a call served by channel ik in base station k ends its talk at time tn; if T (n) = ηk,ik(n), a call
served by channel ik in base station k moves to base station dk,ik(n) at time tn. Note that, in
each chain, if it is impossible for such a transition to occur at time tn, no real state transitions
occur at that time and we regard such tn as a shadow epoch of state transition.

For each m ∈ {0, 1, 2}, we give the initial state of {X̂ [m]
(t)} by x[m] ∈ S [m], i.e., X̂

[m]
(0) =

x[m], where S [0] = S and S [1] = S [2] = S0, and construct sample paths of {X̂ [m]
(t)} from

realizations of the sequences of random variables {τk(n), (τ(k,l)(n), j(k,l)(n)), sk(n),ηk(n), k ∈
A, l ∈ C(k)}∞n=1. That is, for each ω ∈ Ω, a sample path {X̂ [m]

(t;ω)} is given as a function
of the sequence {τk(n;ω), (τ(k,l)(n;ω), j(k,l)(n;ω)),sk(n;ω),ηk(n;ω), k ∈ A, l ∈ C(k)}∞n=1 in the

following manner. Below we assume that, when there exist X̂
[m]
k (t;ω) calls in base station

k in Model m, channels labeled from 1 to X̂
[m]
k (t;ω) are occupied and channels labeled from

X̂
[m]
k (t;ω) + 1 to ck are idle.

(i) In the case of T (n;ω) = τk(n;ω):

(a) When k ∈ A0, for each m ∈ {0, 1, 2}, if X̂
[m]
k (tn−1;ω) < ck − gk, then X̂

[m]
k (tn;ω) =

X̂
[m]
k (tn−1;ω) + 1; if not, X̂

[m]
k (tn;ω) = X̂

[m]
k (tn−1;ω). Other elements of X̂

[m]
(t;ω)

remain unchanged at time tn(ω).

(b) When k ∈ A0, X̂
[1]

(t;ω) and X̂
[2]

(t;ω) remain unchanged at time tn(ω) and X̂
[0]

(t;ω)
changes in the same manner as (i)-(a) at that time.

(ii) In the case of T (n;ω) = τ(k,l)(n;ω) and j(k,l)(n;ω) = k:
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(a) When k, l ∈ A0, for each m ∈ {0, 1, 2}, if X̂
[m]
k (tn−1;ω) < ck − gk, then X̂

[m]
k (tn;ω) =

X̂
[m]
k (tn−1;ω) + 1 and X̂

[m]
l (tn;ω) = X̂

[m]
l (tn−1;ω); if X̂

[m]
k (tn−1;ω) ≥ ck − gk and

X̂
[m]
l (tn−1;ω) < cl−gl, then we obtain X̂

[m]
k (tn;ω) = X̂

[m]
k (tn−1;ω) and X̂

[m]
l (tn;ω) =

X̂
[m]
l (tn−1;ω)+1; otherwise, we obtain X̂

[m]
k (tn;ω) = X̂

[m]
k (tn−1;ω) and X̂

[m]
l (tn;ω) =

X̂
[m]
l (tn−1;ω). Other elements of X̂

[m]
(t;ω) remain unchanged at time tn(ω).

(b) When k ∈ A0 and l ∈ A0, for each m ∈ {1, 2}, if X̂
[m]
k (tn−1;ω) < ck − gk, then

X̂
[m]
k (tn;ω) = X̂

[m]
k (tn−1;ω) + 1; if not, X̂

[m]
k (tn;ω) = X̂

[m]
k (tn−1;ω); other elements

of X̂
[m]

(t;ω) remain unchanged at time tn(ω). On the other hand, X̂
[0]

(t;ω) changes
in the same manner as (ii)-(a) at time tn(ω).

(c) When k ∈ A0 and l ∈ A0, X̂
[1]

(t;ω) changes in the same manner as (ii)-(b) but

replacing k with l at time tn(ω) and X̂
[2]

(t;ω) remains unchanged at that time. On

the other hand, X̂
[0]

(t;ω) changes in the same manner as (ii)-(a) at time tn(ω).

(d) When k, l ∈ A0, X̂
[1]

(t;ω) and X̂
[2]

(t;ω) remain unchanged at time tn(ω) and

X̂
[0]

(t;ω) changes in the same manner as (ii)-(a) at that time.

(iii) In the case of T (n;ω) = sk,ik(n;ω):

(a) When k ∈ A0, for each m ∈ {0, 1, 2}, if ik ≤ X̂
[m]
k (tn−1;ω), then X̂

[m]
k (tn;ω) =

X̂
[m]
k (tn−1;ω) − 1; if not, X̂

[m]
k (tn;ω) = X̂

[m]
k (tn−1;ω). Other elements of X̂

[m]
(t;ω)

remain unchanged at time tn(ω).

(b) When k ∈ A0, X̂
[1]

(t;ω) and X̂
[2]

(t;ω) remain unchanged at time tn(ω) and X̂
[0]

(t;ω)
changes in the same manner as (iii)-(a) at that time.

(iv) In the case of T (n;ω) = ηk,ik(n;ω) and dk,ik(n;ω) = l:

(a) When k, l ∈ A0, for each m ∈ {0, 1, 2}, if ik ≤ X̂
[m]
k (tn−1;ω) and X̂

[m]
l (tn−1;ω) <

cl, then X̂
[m]
k (tn;ω) = X̂

[m]
k (tn−1;ω) − 1 and X̂

[m]
l (tn;ω) = X̂

[m]
l (tn−1;ω) + 1; if

ik ≤ X̂
[m]
k (tn−1;ω) and X̂

[m]
l (tn−1;ω) = cl, then X̂

[m]
k (tn;ω) = X̂

[m]
k (tn−1;ω) − 1 and

X̂
[m]
l (tn;ω) = X̂

[m]
l (tn−1;ω); otherwise, X̂

[m]
k (tn;ω) = X̂

[m]
k (tn−1;ω) and X̂

[m]
l (tn;ω) =

X̂
[m]
l (tn−1;ω). Other elements of X̂

[m]
(t;ω) remain unchanged at time tn(ω).

(b) When k ∈ A0 and l ∈ A0, for model m ∈ {1, 2}, if ik ≤ X̂
[m]
k (tn−1;ω), then

X̂
[m]
k (tn;ω) = X̂

[m]
k (tn−1;ω) − 1; other elements of X̂

[m]
(t;ω) remain unchanged at

time tn(ω). On the other hand, X̂
[0]

(t;ω) changes in the same manner as (iv)-(a) at
time tn(ω).

(c) When k ∈ A0 and l ∈ A0, if X̂
[1]
l (tn−1;ω) < cl, then X̂

[1]
l (tn;ω) = X̂

[1]
l (tn−1;ω) + 1;

if not, X̂
[1]
l (tn;ω) = X̂

[1]
l (tn−1;ω). Other elements of X̂

[1]
(t;ω) remain unchanged

at time tn(ω). On the other hand, X̂
[2]

(t;ω) remains unchanged at time tn(ω) and

X̂
[0]

(t;ω) changes in the same manner as (iv)-(a) at that time.

(d) When k, l ∈ A0, X̂
[1]

(t;ω) and X̂
[2]

(t;ω) remain unchanged at time tn(ω) and

X̂
[0]

(t;ω) changes in the same manner as (iv)-(a) at that time.
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For t ∈ (tn−1(ω), tn(ω)), X̂
[m]

(t;ω) is given as X̂
[m]

(t;ω) = X̂
[m]

(tn−1;ω). Note that, since area
(k, l) is the same area as area (l, k), case (ii) includes the case where T (n;ω) = τ(k,l)(n;ω) and
j(k,l)(n;ω) = l.

Now we compare sample paths of {X̂ [0]
(t)}, {X̂ [1]

(t)} and {X̂ [2]
(t)}.

Lemma 2 Let X̂
[0]
A0

(t) be the restriction of X̂
[0]

(t) to the set of focused base stations, A0, i.e.,

X̂
[0]
A0

(t) = (X̂ [0]
k (t), k ∈ A0). Let x[0] ∈ S and x[1] ∈ S0 (resp. x[2] ∈ S0 and x[0] ∈ S) be

the initial states of {X̂ [0]
(t)} and {X̂ [1]

(t)} (resp. {X̂ [2]
(t)} and {X̂ [0]

(t)}), and assume that

x
[0]
A0

≤ x[1] (resp. x[2] ≤ x
[0]
A0

), where x
[0]
A0

is the restriction of x[0] to A0. Then, X̂
[0]
A0

(t) ≤ X̂
[1]

(t)

(resp. X̂
[2]

(t) ≤ X̂
[0]
A0

(t)) for all t ≥ 0 w.p. 1.

Proof. For the purpose, it is sufficient to show that, for each ω ∈ Ω, for any n ≥ 1, the inequality
X̂

[0]
A0

(tn−1;ω) ≤ X̂
[1]

(tn−1;ω) (resp. X̂
[2]

(tn−1;ω) ≤ X̂
[0]
A0

(tn−1;ω)) implies that X̂
[0]
A0

(tn;ω) ≤
X̂

[1]
(tn;ω) (resp. X̂

[2]
(tn;ω) ≤ X̂

[0]
A0

(tn;ω)). We assume X̂
[0]
A0

(tn−1;ω) ≤ X̂
[1]

(tn−1;ω).

(i) In the case of T (n;ω) = τk(n;ω):

(a) When k ∈ A0, if X̂
[1]
k (tn−1;ω) < ck − gk, then

X̂
[0]
k (tn;ω) = X̂

[0]
k (tn−1;ω) + 1 ≤ X̂

[1]
k (tn−1;ω) + 1 = X̂

[1]
k (tn;ω);

if X̂
[0]
k (tn−1;ω) < ck − gk ≤ X̂

[1]
k (tn−1;ω), then

X̂
[0]
k (tn;ω) = X̂

[0]
k (tn−1;ω) + 1 ≤ ck − gk ≤ X̂

[1]
k (tn−1;ω) = X̂

[1]
k (tn;ω);

otherwise,

X̂
[0]
k (tn;ω) = X̂

[0]
k (tn−1;ω) ≤ X̂

[1]
k (tn−1;ω) = X̂

[1]
k (tn;ω).

Other elements of X̂
[0]
A0

(t;ω) and X̂
[1]

(t;ω) remain unchanged at time tn(ω), and

hence we obtain X̂
[0]
A0

(tn;ω) ≤ X̂
[1]

(tn;ω).

(b) When k ∈ A0, both X̂
[0]
A0

(t;ω) and X̂
[1]

(t;ω) remain unchanged at time tn(ω). Hence

we obtain X̂
[0]
A0

(tn;ω) ≤ X̂
[1]

(tn;ω).

(ii) In the case of T (n;ω) = τ(k,l)(n;ω) and j(k,l)(n;ω) = k:

(a) When k, l ∈ A0, if X̂
[1]
k (tn−1;ω) < ck − gk, then

X̂
[0]
k (tn;ω) = X̂

[0]
k (tn−1;ω) + 1 ≤ X̂

[1]
k (tn−1;ω) + 1 = X̂

[1]
k (tn;ω) and

X̂
[0]
l (tn;ω) = X̂

[0]
l (tn−1;ω) ≤ X̂

[1]
l (tn−1;ω) = X̂

[1]
l (tn;ω);

if X̂
[0]
k (tn−1;ω) < ck − gk ≤ X̂

[1]
k (tn−1;ω), then

X̂
[0]
k (tn;ω) = X̂

[0]
k (tn−1;ω) + 1 ≤ ck − gk ≤ X̂

[1]
k (tn−1;ω) = X̂

[1]
k (tn;ω) and

X̂
[0]
l (tn;ω) = X̂

[0]
l (tn−1;ω) ≤ X̂

[1]
l (tn−1;ω) ≤ X̂

[1]
l (tn;ω);
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if X̂
[0]
k (tn−1;ω) ≥ ck − gk and X̂

[1]
l (tn−1;ω) < cl − gl, then

X̂
[0]
k (tn;ω) = X̂

[0]
k (tn−1;ω) ≤ X̂

[1]
k (tn−1;ω) = X̂

[1]
k (tn;ω) and

X̂
[0]
l (tn;ω) = X̂

[0]
l (tn−1;ω) + 1 ≤ X̂

[1]
l (tn−1;ω) + 1 = X̂

[1]
l (tn;ω);

if X̂
[0]
k (tn−1;ω) ≥ ck − gk and X̂

[0]
l (tn−1;ω) < cl − gl ≤ X̂

[1]
l (tn−1;ω), then

X̂
[0]
k (tn;ω) = X̂

[0]
k (tn−1;ω) ≤ X̂

[1]
k (tn−1;ω) = X̂

[1]
k (tn;ω) and

X̂
[0]
l (tn;ω) = X̂

[0]
l (tn−1;ω) + 1 ≤ cl − gl ≤ X̂

[1]
l (tn−1;ω) = X̂

[1]
l (tn;ω);

otherwise,

X̂
[0]
k (tn;ω) = X̂

[0]
k (tn−1;ω) ≤ X̂

[1]
k (tn−1;ω) = X̂

[1]
k (tn;ω) and

X̂
[0]
l (tn;ω) = X̂

[0]
l (tn−1;ω) ≤ X̂

[1]
l (tn−1;ω) = X̂

[1]
l (tn;ω).

Other elements of X̂
[0]
A0

(t;ω) and X̂
[1]

(t;ω) remain unchanged at time tn(ω), and

hence we obtain X̂
[0]
A0

(tn;ω) ≤ X̂
[1]

(tn;ω).

(b) When k ∈ A0 and l ∈ A0, if X̂
[1]
k (tn−1;ω) < ck − gk, then

X̂
[0]
k (tn;ω) = X̂

[0]
k (tn−1;ω) + 1 ≤ X̂

[1]
k (tn−1;ω) + 1 = X̂

[1]
k (tn;ω);

if X̂
[0]
k (tn−1;ω) < ck − gk ≤ X̂

[1]
k (tn−1;ω), then

X̂
[0]
k (tn;ω) = X̂

[0]
k (tn−1;ω) + 1 ≤ ck − gk ≤ X̂

[1]
k (tn−1;ω) = X̂

[1]
k (tn;ω);

otherwise,

X̂
[0]
k (tn;ω) = X̂

[0]
k (tn−1;ω) ≤ X̂

[1]
k (tn−1;ω) = X̂

[1]
k (tn;ω).

Other elements of X̂
[0]
A0

(t;ω) and X̂
[1]

(t;ω) remain unchanged at time tn(ω), and

hence we obtain X̂
[0]
A0

(tn;ω) ≤ X̂
[1]

(tn;ω).

(c) When k ∈ A0 and l ∈ A0, X̂
[1]
l (t;ω) changes in the same manner as (ii)-(b) at time

tn(ω) but X̂
[0]
l (t;ω) increases only if X̂

[0]
l (tn−1;ω) < cl−gl and X̂

[0]
k (tn−1;ω) ≥ ck−gk.

Since other elements of X̂
[0]
A0

(t;ω) and X̂
[1]

(t;ω) remain unchanged at time tn(ω), we,

therefore, obtain X̂
[0]
A0

(tn;ω) ≤ X̂
[1]

(tn;ω).

(d) When k, l ∈ A0, both X̂
[0]
A0

(t;ω) and X̂
[1]

(t;ω) remain unchanged at time tn(ω).

Hence we obtain X̂
[0]
A0

(tn;ω) ≤ X̂
[1]

(tn;ω).

(iii) In the case of T (n;ω) = sk,ik(n;ω):

(a) When k ∈ A0, if ik ≤ X̂
[0]
k (tn−1;ω), then

X̂
[0]
k (tn;ω) = X̂

[0]
k (tn−1;ω) − 1 ≤ X̂

[1]
k (tn−1;ω) − 1 = X̂

[1]
k (tn;ω);

if X̂
[0]
k (tn−1;ω) < ik ≤ X̂

[1]
k (tn−1;ω), then

X̂
[0]
k (tn;ω) = X̂

[0]
k (tn−1;ω) ≤ ik − 1 ≤ X̂

[1]
k (tn−1;ω) − 1 = X̂

[1]
k (tn;ω);
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otherwise,

X̂
[0]
k (tn;ω) = X̂

[0]
k (tn−1;ω) ≤ X̂

[1]
k (tn−1;ω) = X̂

[1]
k (tn;ω).

Other elements of X̂
[0]
A0

(t;ω) and X̂
[1]

(t;ω) remain unchanged at time tn(ω), and

hence we obtain X̂
[0]
A0

(tn;ω) ≤ X̂
[1]

(tn;ω).

(b) When k ∈ A0, both X̂
[0]
A0

(t;ω) and X̂
[1]

(t;ω) remain unchanged at time tn(ω). Hence

we obtain X̂
[0]
A0

(tn;ω) ≤ X̂
[1]

(tn;ω).

(iv) In the case of T (n;ω) = ηk,ik(n;ω) and dk,ik(n;ω) = l:

(a) When k, l ∈ A0, if ik ≤ X̂
[0]
k (tn−1;ω), then

X̂
[0]
k (tn;ω) = X̂

[0]
k (tn−1;ω) − 1 ≤ X̂

[1]
k (tn−1;ω) − 1 = X̂

[1]
k (tn;ω) and

X̂
[0]
l (tn;ω) = min{cl, X̂

[0]
l (tn−1;ω) + 1} ≤ min{cl, X̂

[1]
l (tn−1;ω) + 1} = X̂

[1]
l (tn;ω);

if X̂
[0]
k (tn−1;ω) < ik ≤ X̂

[1]
k (tn−1;ω), then

X̂
[0]
k (tn;ω) = X̂

[0]
k (tn−1;ω) ≤ ik − 1 ≤ X̂

[1]
k (tn−1;ω) − 1 = X̂

[1]
k (tn;ω) and

X̂
[0]
l (tn;ω) = X̂

[0]
l (tn−1;ω) ≤ min{cl, X̂

[1]
l (tn−1;ω) + 1} = X̂

[1]
l (tn;ω);

otherwise,

X̂
[0]
k (tn;ω) = X̂

[0]
k (tn−1;ω) ≤ X̂

[1]
k (tn−1;ω) = X̂

[1]
k (tn;ω) and

X̂
[0]
l (tn;ω) = X̂

[0]
l (tn−1;ω) ≤ X̂

[1]
l (tn−1;ω) = X̂

[1]
l (tn;ω).

Other elements of X̂
[0]
A0

(t;ω) and X̂
[1]

(t;ω) remain unchanged at time tn(ω), and

hence we obtain X̂
[0]
A0

(tn;ω) ≤ X̂
[1]

(tn;ω).

(b) When k ∈ A0 and l ∈ A0, X̂
[0]
A0

(t;ω) and X̂
[1]

(t;ω) change in the same manner as

(iii)-(a) at time tn(ω), and hence we obtain X̂
[0]
A0

(tn;ω) ≤ X̂
[1]

(tn;ω).

(c) When k ∈ A0 and l ∈ A0,

X̂
[0]
l (tn;ω) ≤ min{cl, X̂

[0]
l (tn−1;ω) + 1} ≤ min{cl, X̂

[1]
l (tn−1;ω) + 1} = X̂

[1]
l (tn;ω).

Other elements of X̂
[0]
A0

(t;ω) and X̂
[1]

(t;ω) remain unchanged at time tn(ω), and

hence we obtain X̂
[0]
A0

(tn;ω) ≤ X̂
[1]

(tn;ω).

(d) When k, l ∈ A0, both X̂
[0]
A0

(t;ω) and X̂
[1]

(t;ω) remain unchanged at time tn(ω).

Hence we obtain X̂
[0]
A0

(tn;ω) ≤ X̂
[1]

(tn;ω).

In the same manner, we can prove that if X̂
[2]

(tn−1;ω) ≤ X̂
[0]
A0

(tn−1;ω), then X̂
[2]

(tn;ω) ≤
X̂

[0]
A0

(tn;ω) for all n ≥ 0. �

For each m ∈ {0, 1, 2}, in the same manner as used for constructing {X̂ [m]
(t)}, we can also

construct Markov chains starting from different initial states, {1X̂
[m]

(t)} and {2X̂
[m]

(t)}, on the
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same probability space (Ω,F , P ) such that, for ν ∈ {1, 2}, the state transitions of the Markov

chain {νX̂
[m]

(t)} and those of {X [m](t)} obey the same probability law. Comparing sample

paths of {1X̂
[m]

(t)} and {2X̂
[m]

(t)} for each m ∈ {0, 1, 2}, we obtain the next lemma, which can
be proved by using the same idea as used for deriving Lemma 2.

Lemma 3 For m ∈ {0, 1, 2}, let 1x[m] ∈ S [m] and 2x[m] ∈ S [m] be the initial states of {1X̂
[m]

(t)}
and {2X̂

[m]
(t)}, and assume that 1x[m] ≤ 2x[m]. Then, 1X̂

[m]
(t) ≤ 2X̂

[m]
(t) for all t ≥ 0 w.p. 1.

For random vectors A and B with values in Rn, if E[f(A)] ≤ E[f(B)] for all bounded
nondecreasing function f : Rn → R, then we denote A ≤st B. This relation ≤st is called the
usual stochastic order[7]. From Lemma 2, we obtain the next lemma.

Lemma 4

X [2] ≤st X
[0]
A0

≤st X [1] (6)

Proof. Consider vectors x[m] in S [m], m = 0, 1, 2, such that x[1] ≤ x
[0]
A0

≤ x[2], and for

m ∈ {0, 1, 2} let the initial states of the Markov chains {X̂ [m]
(t)} and {X [m](t)} be x[m]. The

state transitions of {X̂ [m]
(t)} and those of {X [m](t)} obey the same probability law and hence

we obtain that X̂
[m]

(t) =d X [m](t) for all t ≥ 0, where the relation =d represents equality in

distribution. Furthermore, Lemma 2 claims that Pr(X̂
[0]
A0

(t) ≤ X̂
[1]

(t)) = 1 and Pr(X̂
[2]

(t) ≤
X̂

[0]
A0

(t)) = 1 for all t ≥ 0. Hence we obtain that X
[0]
A0

(t) ≤st X [1](t) and X [1](t) ≤st X
[0]
A0

(t)
for all t ≥ 0. For each m ∈ {0, 1, 2}, the Markov chain {X [m](t)} is irreducible and finite, and
hence X [m](t) converges weakly to X [m]. Since the usual stochastic order is closed with respect
to weak convergence [7], we obtain the assertion of the lemma. �

Let 1A denote an indicator function of condition A. For a fixed xk, 1{x′
k≥xk} is nondecreasing

and bounded with respect to x′
k and, for fixed xk and xl, 1{x′

k≥xk, x′
l≥xl} is nondecreasing and

bounded with respect to x′
k and x′

l. Hence we immediately obtain the next corollary from Lemma
4.

Corollary 5 For k, l ∈ A0, for xk ∈ [0, ck ], xl ∈ [0, cl],

P̄
[2]
k (xk) ≤ P̄

[0]
k (xk) ≤ P̄

[1]
k (xk) and P̄

[2]
k,l (xk, xl) ≤ P̄

[0]
k,l (xk, xl) ≤ P̄

[1]
k,l (xk, xl). (7)

3.3 Monotone properties for the conditional call-completion probabilities

For Model m (m ∈ {0, 1, 2}), let α
[m]
k (x[m]) be the conditional call-completion probability of a

call served at base station k, given that the state of the system at that time is x[m] ∈ S [m],
where S [0] = S and S [1] = S [2] = S0. If x

[m]
k = 0, then we assume α

[m]
k (x[m]) to be zero. To get

monotone properties for α
[m]
k (x[m]), we use the Markov chains {X̂ [m]

(t)}, m = 0, 1, 2, described
in the previous subsection. From their definitions, it can be seen that, for each m ∈ {0, 1, 2}, the

Markov chain {X̂ [m]
(t)} is a stochastic process representing the behavior of Model m. Hence

we define a tagged call served at base station k in each model and study the behaviors of the
tagged calls.
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For each m ∈ {0, 1, 2}, consider that X̂
[m]

(t) represents the state of Model m at time t, and

assume X̂
[m]

(0) = x[m]. For a fixed k ∈ A0, assume x
[m]
k > 0 and let Û

[m]
0 denote a tagged

call served at base station k in Model m at time 0. In order to synchronize the behaviors of
Û

[0]
0 , Û

[1]
0 and Û

[2]
0 , we further assume that, for each m, if Û

[m]
0 is served in some base station,

then it always occupies channel 1 of the base station. That is, when there exist X̂
[m]
l (t) calls in

base station l in Model m and one of them is Û
[m]
0 , Û

[m]
0 occupies channel 1 and the other calls

occupy channels 2 through X̂
[m]
l (t). To achieve this, we assume that, when Û

[m]
0 is successfully

handed over to base station l at time t, calls in base station l change their positions to channels
2 through X̂

[m]
l (t− 0) + 1 and Û

[m]
0 is assigned to channel 1. It is clear that these modifications

do not change the probability law of the processes.
For n ≥ 0, let tn be the nth transition time defined by formula (5), and suppose that each

tagged call is served in base station l (l ∈ A0) in the corresponding model at time tn. For ω ∈ Ω,

we assume that X̂
[2]

(tn;ω) ≤ X̂
[0]
A0

(tn;ω) ≤ X̂
[1]

(tn;ω). Then, the states of the tagged calls at
the next transition time, tn+1(ω), are given as follows.

(i) In the case of T (n + 1;ω) = sl,1(n + 1;ω), all the tagged calls end their talks (holding times)
simultaneously at time tn+1(ω) and they become completed calls.

(ii) In the case of T (n + 1;ω) = ηl,1(n + 1;ω) and dl,1(n + 1;ω) = l′, we further consider the
following two cases.

(a) If l′ ∈ A0, then all the tagged calls try to move from base station l to base station

l′ at time tn+1(ω). From the assumption that X̂
[0]
A0

(tn;ω) ≤ X̂
[1]

(tn;ω), if Û
[1]
0 is

successfully handed over at that time, Û
[0]
0 is also successfully handed over. Moreover,

from the assumption that X̂
[2]

(tn;ω) ≤ X̂
[0]
A0

(tn;ω), if Û
[0]
0 is successfully handed over

at that time, Û
[2]
0 is also successfully handed over.

(b) If l′ ∈ A0, then Û
[0]
0 tries to move from base station l to base station l′ at time

tn+1(ω); Û
[1]
0 moves from base station l to the outside of A0 and it becomes a forcibly

terminated call; Û
[2]
0 moves from base station l to the outside of A0 and it becomes

a completed call.

(iii) In the other cases, all the tagged calls remain in base station l at time tn+1(ω).

Note that, once case (ii)-(b) occurs, Û
[1]
0 and Û

[2]
0 disappear from their systems but Û

[0]
0 may

not. Hence we have to describe the behavior of Û
[0]
0 when it is served at base station l in A0 at

time tn(ω).

(i’) In the case of T (n + 1;ω) = sl,1(n + 1;ω), Û
[0]
0 ends its talk (holding time) at time tn+1(ω)

and it becomes a completed call.

(ii’) In the case of T (n + 1;ω) = ηl,1(n + 1;ω) and dl,1(n + 1;ω) = l′, Û
[0]
0 tries to move from

base station l to base station l′ at time tn+1(ω). This handover will be successful when
X̂

[0]
l′ (tn;ω) < cl′ .

(iii’) In the other cases, Û
[0]
0 remains in base station l at time tn+1(ω).
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Next we define, for each m ∈ {0, 1, 2}, a process {Ŵ [m](t)} representing the state of Û
[m]
0 as

follows.

Ŵ [m](t) =

⎧⎪⎨
⎪⎩

w if Û
[m]
0 is served at base station w at time t,

0 if Û
[m]
0 has successfully completed its talk at or before time t,

−1 otherwise.

We obtain the next lemma.

Lemma 6 Let x be a vector in S, and assume that X̂
[0]

(0) = x and X̂
[1]

(0) = X̂
[2]

(0) = xA0 ,
where xA0 is the restriction of x to the set of focused base stations, A0. Moreover we assume
that each tagged call is served at base station k (k ∈ A0) in the corresponding model at time 0.
(This means that xk ≥ 1.) Then the following statements hold for all t ≥ 0 w.p. 1.

Ŵ [1](t) = w (w ∈ A0) ⇒ Ŵ [0](t) = w (8)

Ŵ [1](t) = 0 ⇒ Ŵ [0](t) = 0 (9)

Ŵ [0](t) = w (w ∈ A0) ⇒ Ŵ [2](t) = w or 0 (10)

Ŵ [0](t) = w (w ∈ A0) ⇒ Ŵ [2](t) = 0 (11)

Ŵ [0](t) = 0 ⇒ Ŵ [2](t) = 0 (12)

Proof. Let {tn} be the transition times defined by formula (5). Since the state of X̂
[m]

(t) does
not change between the times, it is sufficient to show that the statements hold for tn, n ≥ 0.
From the assumption for the tagged calls, we obtain Ŵ [0](0) = Ŵ [1](0) = Ŵ [2](0) = k, and
taking account of the assumptions of the initial states and Lemma 2, we obtain, for each ω ∈ Ω,

X̂
[2]

(tn;ω) ≤ X̂
[0]
A0

(tn;ω) ≤ X̂
[1]

(tn;ω) for all n ≥ 0.

Hence the tagged calls change their states according to (i)–(iii) and (i’)–(iii’) described above.
Each statement is obtained from the following reasons, where we assume that n ≥ 1.

• Statement (8). Ŵ [1](tn;ω) = w ∈ A0 means that either (ii)-(a) or (iii) occurred at time
tn(ω). In both the cases, we obtain Ŵ [0](tn;ω) = w.

• Statement (9). Ŵ [1](tn;ω) = 0 means that case (i) has occurred at or before time tn(ω).
Hence we obtain Ŵ [0](tn;ω) = 0.

• Statement (10). When Ŵ [0](tn;ω) = w ∈ A0, two cases can be considered: one is that Û
[0]
0

has been in the outside of A0 at least once and the other that it has never. In the former
case, from (ii)-(b), we obtain Ŵ [2](tn;ω) = 0. In the latter case, we obtain Ŵ [2](tn;ω) = w
from the same reason as used for statement (8).

• Statement (11). Ŵ [0](tn;ω) = w ∈ A0 means that case (ii)-(b) has occurred at or before
time tn. Hence we obtain Ŵ [2](tn;ω) = 0.

• Statement (12). When Ŵ [0](tn;ω) = 0, two cases can be considered: one is that Û
[0]
0 has

been in the outside of A0 at least once and then successfully completed its talk, and the
other that it has successfully completed its talk before leaving A0. In the former case,
from (ii)-(b), we obtain Ŵ [2](tn;ω) = 0, and in the latter case, from (i), we also obtain it.

�

From Lemma 6, we obtain the next lemma.
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Lemma 7 For k ∈ A0, for every vector x in S,

α
[1]
k (xA0) ≤ α

[0]
k (x) ≤ α

[2]
k (xA0). (13)

Proof. For each model, we assume that the tagged call is served at base station k in A0 at
time 0. From statements (9) and (12), we obtain 1{Ŵ [1](t)=0} ≤ 1{Ŵ [0](t)=0} ≤ 1{Ŵ [2](t)=0} for all
t ≥ 0 w.p. 1. Since 1{Ŵ [m](t)=0} is nondecreasing with respect to t, the monotone convergence
theorem implies that

α
[m]
k (x[m]) = E

[
lim
t→∞ 1{Ŵ [m](t)=0}

]
= lim

t→∞E
[
1{Ŵ [m](t)=0}

]
,

where x[0] = x and x[1] = x[2] = xA0 . Hence we obtain

α
[1]
k (xA0) = lim

t→∞E
[
1{Ŵ [1](t)=0}

]
≤ lim

t→∞E
[
1{Ŵ [0](t)=0}

]
= α

[0]
k (x)

and

α
[0]
k (x) = lim

t→∞E
[
1{Ŵ [0](t)=0}

]
≤ lim

t→∞E
[
1{Ŵ [2](t)=0}

]
= α

[2]
k (xA0).

�

In the same idea as used for obtaining Lemma 7, we can derive another monotone property
for α

[m]
k (x[m]) as follows.

Lemma 8 For each m ∈ {0, 1, 2}, α
[m]
k (x[m]) is a nonincreasing function of x[m] ∈ S [m].

Proof. Here we describe only an outline of the proof. Consider the Markov chains {1X̂
[m]

(t)}
and {2X̂

[m]
(t)} given in the previous subsection, and assume that 1X̂

[m]
(0) = 1x[m] ∈ S [m],

2X̂
[m]

(0) = 2x[m] ∈ S [m] and 1x[m] ≤ 2x[m]. Then, from Lemma 3, we obtain that 1X̂
[m]

(t) ≤
2X̂

[m]
(t) for all t ≥ 0 w.p. 1. For the Markov chains, tagged calls 1Û

[m]
0 and 2Û

[m]
0 are defined like

Û
[m]
0 was defined, and processes {1Ŵ [m](t)} and {2Ŵ [m](t)} are constructed in the same manner

as used for constructing {Ŵ [m](t)}. Studying the behaviors of 1Û
[m]
0 and 2Û

[m]
0 , we obtain

2Ŵ [m](t) = w (w ∈ A[m]) ⇒ 1Ŵ [m](t) = w, (14)
2Ŵ [m](t) = 0 ⇒ 1Ŵ [m](t) = 0, (15)

and this corresponds to Lemma 6. From statement (15), we obtain

α
[m]
k (1x[m]) ≥ α

[m]
k (2x[m]).

This leads us to the assertion of the lemma. �

3.4 Proof of Theorem 1

Proof of Theorem 1. For m ∈ {0, 1, 2}, first we obtain some relations between ζ
[m]
k and ξ

[m]
(k,l).

Let ek be a vector with a suitable dimension whose kth element is one and whose other elements
are all zero (i.e., kth unit vector). From PASTA [13], calls generated in area k ∈ A0 see time
averages and ζ

[m]
k is given by

ζ
[m]
k =

∑
x∈S [m]

1{xk<ck−gk}α
[m]
k (x + ek)P [m](x) = E

[
1{X[m]

k <ck−gk}α
[m]
k (X [m] + ek)

]
,
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where S [0] = S and S [1] = S [2] = S0. For k ∈ A0, x ∈ S, Lemma 7 claims that α
[0]
k (x + ek) ≥

α
[1]
k (xA0 + (ek)A0), where (ek)A0 is the restriction of ek to A0, and Lemma 8 implies that

1{xk<ck−gk}α
[1]
k (xA0 + (ek)A0) is nonincreasing and bounded with respect to xA0 . Hence, we

obtain

ζ
[0]
k = E

[
1{X[0]

k <ck−gk}α
[0]
k (X [0] + ek)

]
≥ E

[
1{X[0]

k <ck−gk}α
[1]
k (X [0]

A0
+ (ek)A0)

]
≥ E

[
1{X[1]

k <ck−gk}α
[1]
k (X [1] + (ek)A0)

]
= ζ

[1]
k . (16)

To derive the second inequality in (16), we use Lemma 4. In the same way, we obtain, for
k ∈ A0,

ζ
[0]
k ≤ ζ

[2]
k . (17)

For Model 0, let ζ
[0]
(k,l) be the probability that an arbitrary call generated in area (k, l) starts

its talk (holding time) at base station k and successfully completes the talk at some base station.
ζ
[0]
(k,l) is represented in terms of ζ

[0]
k and ξ

[0]
(k,l) as follows.

ζ
[0]
(k,l) =

1
2
E
[
1{X[0]

k <ck−gk}α
[0]
k (X [0] + ek)

]
+

1
2
E
[
1{X[0]

k <ck−gk} 1{X[0]
l ≥cl−gl}α

[0]
k (X [0] + ek)

]
=

1
2
ζ
[0]
k +

1
2
E
[(

1{X[0]
k <ck−gk} − 1{X[0]

k <ck−gk} 1{X[0]
l <cl−gl}

)
α

[0]
k (X [0] + ek)

]
= ζ

[0]
k − ξ

[0]
(k,l), (18)

where ξ
[0]
(k,l) is given by

ξ
[0]
(k,l) =

1
2
E
[
1{X[0]

k <ck−gk} 1{X[0]
l <cl−gl}α

[0]
k (X [0] + ek)

]
.

For m ∈ {1, 2}, for k ∈ A0, l ∈ C(k)
0 , ξ

[m]
(k,l) is also given by

ξ
[m]
(k,l) =

1
2
E
[
1{X[m]

k <ck−gk} 1{X[m]
l <cl−gl}α

[m]
k (X [m] + ek)

]
.

Since 1{xk<ck−gk} 1{xl<cl−gl}α
[m]
k (x) is nonincreasing and bounded with respect to x ∈ S [m], in

the same way as that used for ζ
[m]
k , we obtain the following inequality of ξ

[m]
(k,l) for k ∈ A0,

l ∈ C(k)
0 .

ξ
[1]
(k,l) ≤ ξ

[0]
(k,l) ≤ ξ

[2]
(k,l) (19)

In the case of k ∈ A0 and l ∈ C0, the next inequality can be used.

0 ≤ ξ
[0]
(k,l) ≤

1
2
E
[
1{X[0]

k <ck−gk}α
[0]
k (X [0] + ek)

]
=

1
2
ζ
[0]
k ≤ 1

2
ζ
[2]
k (20)

Assume that the system is in steady state, and let U0 denote an arbitrary call generated in
zone k in Model 0. Remind that zone k consists of area k and areas (k, l), l ∈ C(k). In order to
obtain inequality (3), we define the following events for Model 0.
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• A: U0 successfully completes its talk (holding time) at some base station.

• Bk: U0 starts its talk (holding time) at base station k.

• Ck: U0 is generated in area k.

• C(k,l): U0 is generated in area (k, l).

Then, ζ
[0]
k and ζ

[0]
(k,l) are given by ζ

[0]
k = Pr(A,Bk |Ck) and ζ

[0]
(k,l) = Pr(A,Bk |C(k,l)), and θk is

represented as

θk = Pr(A |Bk) =
Pr(A,Bk, Ck) +

∑
l∈C(k) Pr(A,Bk, C(k,l))

Pr(Bk, Ck) +
∑

l∈C(k) Pr(Bk, C(k,l))
. (21)

From (18), the numerator of (21) is given by

Pr(A,Bk, Ck) +
∑

l∈C(k)

Pr(A,Bk, C(k,l)) =
λk

Λk
ζ
[0]
k +

∑
l∈C(k)

λ(k,l)

Λk
ζ
[0]
(k,l) = ζ

[0]
k −

∑
l∈C(k)

λ(k,l)

Λk
ξ
[0]
(k,l).

(22)

Applying (16), (17), (19) and (20) to this formula, we obtain

ζ
[1]
k −

∑
l∈C(k)

0

λ(k,l)

Λk
ξ
[2]
(k,l)

− 1
2

∑
l∈C(k)

0

λ(k,l)

Λk
ζ
[2]
k

≤ Pr(A,Bk, Ck) +
∑

l∈C(k)

Pr(A,Bk, C(k,l)) ≤ ζ
[2]
k −

∑
l∈C(k)

0

λ(k,l)

Λk
ξ
[1]
(k,l)

. (23)

The denominator of (21) is given by

Pr(Bk, Ck) +
∑

l∈C(k)

Pr(Bk, C(k,l))

=
λk

Λk
Pr(X [0]

k < ck − gk)

+
∑

l∈C(k)

λ(k,l)

Λk

(
1
2

Pr(X [0]
k < ck − gk) +

1
2

Pr(X [0]
k < ck − gk,X

[0]
l ≥ cl − gl)

)

=
(

λk

Λk
+

1
2

∑
l∈C(k)

λ(k,l)

Λk

)(
1 − φ

[0]
k

)
+

1
2

∑
l∈C(k)

λ(k,l)

Λk
Pr(X [0]

k < ck − gk,X
[0]
l ≥ cl − gl),

(24)

where Pr(X [0]
k < ck − gk,X

[0]
l ≥ cl − gl) can be represented as

Pr(X [0]
k < ck − gk,X

[0]
l ≥ cl − gl) = P̄

[0]
l (cl − gl) − P̄

[0]
k,l (ck − gk, cl − gl) = φ

[0]
l − φ

[0]
(k,l)

and it also satisfies

0 ≤ Pr(X [0]
k < ck − gk,X

[0]
l ≥ cl − gl) ≤ Pr(X [0]

k < ck − gk) = 1 − φ
[0]
k .

Corollary 5 implies that

φ
[2]
l ≤ φ

[0]
l ≤ φ

[1]
l and φ

[2]
(k,l) ≤ φ

[0]
(k,l) ≤ φ

[1]
(k,l),
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and applying these inequalities to (24), we get(
λk

Λk
+

1
2

∑
l∈C(k)

λ(k,l)

Λk

)(
1 − φ

[1]
k

)
+

1
2

∑
l∈C(k)

0

λ(k,l)

Λk

(
φ

[2]
l − φ

[1]
(k,l)

)

≤Pr(Bk, Ck) +
∑

l∈C(k)

Pr(Bk, C(k,l))

≤
(

λk

Λk
+

1
2

∑
l∈C(k)

λ(k,l)

Λk

)(
1 − φ

[2]
k

)
+

1
2

∑
l∈C(k)

0

λ(k,l)

Λk

(
φ

[1]
l − φ

[2]
(k,l)

)
+

1
2

∑
l∈C(k)

0

λ(k,l)

Λk

(
1 − φ

[2]
k

)
.

(25)

Applying (23) and (25) to (21), inequality (3) is derived. �

4 Numerical Examples

In this section, we show some numerical results for a hexagon model, where zones are placed on
a plane and each zone except boundary zones neighbors six others like the one shown in Fig. 2.
In this figure, we assume that the call generation rates in the shaded zones are higher than those
in unshaded zones. Hence we use new notations λ̃1, λ̃2, λ̃′

1 and λ̃′
2 in the following meanings.

λk = λ̃1, 1 ≤ k ≤ 7, λ(k,l) = λ̃2, 1 ≤ k ≤ 7, l ∈ C(k),

λk = λ̃′
1, k > 7, λ(k,l) = λ̃′

2, k > 7, l ∈ C(k) \ {1, 2, ..., 7}.

The number of base stations in the model is not specified but is assumed to be large so that direct
calculations of call completion probabilities are difficult. For analyzing the model, we apply our
method to the model and evaluate bounds of a call completion probability by simulation. In the
table below, ratio indicates the accuracy ratio that is defined as the ratio of the upper bound to
the corresponding lower bound. This accuracy ratio measures tightness of the bounds.
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Figure 2: Hexagon model.

It is expected that the larger the number of focused base stations is the tighter the bounds of a
call completion probability is. To see this, we show some simulation results for the hexagon model
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in Table 1, where size indicates the number of focused base stations. The simulation results
represent point estimates and 95% confidence intervals of the bounds. The model parameters
are set as

λ̃2 = 0.2 λ̃1, λ̃′
1 = 0.5 λ̃1, λ̃′

2 = 0.2 λ̃′
1,

μ = 20, ck = 10, k ≥ 1, gk = 0, k ≥ 1, γk,l = 2, k ≥ 1, l ∈ C(k),

where the value of λ̃1 is set so that (λ̃1 + 3λ̃2)/(c1μ) becomes one. The table shows upper and
lower bounds of θ1. In the simulation experiments, we have generated 20×N0 thousands calls for
each run, where N0 is the number of focused base stations, and used 100 replicas for computing
one point estimate and its interval estimate. Hence, 2 × N0 million calls have been generated
for one simulation result. In the case of N0 = 61, it has taken about a couple of ten minutes to
obtain a simulation result by our personal computer, which have a single processor of 2.4 GHz
and 512 MB memories. From the table, it can be seen that as the number of the focused base
stations becomes larger, the bounds become tighter.

Table 1: Upper and lower bounds of θ1 in a hexagon model with different numbers of focused
base stations.

Size upper bound lower bound ratio
7 1.09872 ± 0.00277 0.69137 ± 0.00228 1.59

19 0.94281 ± 0.00175 0.86754 ± 0.00217 1.09
37 0.92450 ± 0.00174 0.91306 ± 0.00149 1.01
61 0.91959 ± 0.00165 0.91921 ± 0.00151 1.00

5 Conclusions

In this paper, we have proposed a method to obtain tight upper and lower bounds of call
completion probabilities taking account of the whole network. The call completion probability
is one of the most important measures since, in mobile communication networks, calls having
started their talks may forcibly be terminated because of unsuccessful handovers and such call
terminations are very unpleasant for users. Using our method, we can evaluate the bounds by
standards methods such as simulation with less computational burden, where the tightness of
the bounds can be controlled by choosing a set of focused base stations with appropriate size.

From our method and that proposed in Ref. [11], it becomes possible to examine exact rela-
tions between model parameters and various performance measures for some standard models.
Moreover, it becomes also possible to examine accuracy of typical approximation techniques
such as the decomposition method. Results of such an experiment will be presented elsewhere.
It would be also possible to generalize our method. Mobile communication networks with other
control schemes such as dynamic channel assignment are candidates for them. These remain as
future works.
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