Electronics and Communications in Japan, Part 3, Vol. 73, No. 3, 1990
Translated from Denshi Joho Tsushin Gakkai Ronbunshi, Vol. 71-A, No. 5, May 1988, pp. 1193-1200

Analysis of a Single Server Model with Two Queues

Having Different Service Disciplines

Toshihisa Ozawa, Member

NTT Communication Switching Laboratories, Musahino, Japan 180

SUMMARY

This paper analyzes a single server
model with two queues using the generating-
function method. Two sertvice-discipline
models are used: a model in which the ser-
vice discipline of one queue is "exhaustive"
and that of the other queue is "gated"; and a
model in which the service discipline of one
queue is "exhaustive" and that of the other
queue is "l-limited." For each model, the
Laplace-Stieltjes transform (LST) of waiting
time distributions and mean waiting times are
derived. By using the results, the differ-
ence of the mean waiting times in the two
models is shown with numerical examples.
is possible to control the characteristics
(e.g., the mean waiting times in each queue
and their ratio, which depend on parameters
such as the traffic density) of models with
mixed service disciplines by changing the
combination. Therefore, it is important to
analyze these models for designing an inte-
grated system which handles different traffic
characteristics and required qualities.

It

1. Introduction

This paper analyzes a model in which two
queues of customers are served alternately by
one server. The service disciplines can be
classified by the number of customers in a
queue served during one visit of the server.
The following three disciplines are consid-
ered in this paper:

Exhaustive service: The server serves
customers in a queue until the queue is empty.

Cated service: The server serves con-
tinuously only those customers in a queue who
arrived before the visit.

l-limited service: The server serves

only one customer in a queue who arrived be-
fore the visit.
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Time required for the server to move
from one queue to another is called "walking
time."

A head-of-line priority model with two
classes of customers is one of two-queue mod-
els which have mixed service disciplines. 1In
this model, the queue of priority customers
is serviced according to the exhaustive ser-
vice, and the queue of ordinary customers is
serviced according to 1-limited service, with-
out walking time.

The degree of the priority in each queue
can be represented by the ratio of the mean
waiting times and this ratio can be con-
trolled by changing the combination of its
service disciplines. Therefore, it is impor-
tant for designing an integrated system, in
which traffic characteristics and required
qualities are processed, to combine different
service disciplines for each queue.

In this paper, the Laplace-Stieltjes
transforms for waiting times and mean waiting
times are obtained for the following two mod-
els:

(a) Model combining exhaustive service
and gated service;

(b) Model combining exhaustive service
and l-limited service.

These models are analyzed in the case of
zero-walking times and the case of nonzero-
walking times. In the former case, a model
belonging to (b), has already been analyzed
as a nonpreemptive priority queue, hence it
is omitted from this paper.

These models with mixed service discip-
lines are multiqueue systems [1, 2], and
their approximate analyses for waiting times
have been done in [3, 4]. But exact solu-
tions for waiting times of the models have
not been obtained. 1In [5], model (b) with
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Fig. 1. A single server model with two
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walking times was analyzed by walking times
from one queue served according to exhaustive
service to the other queue are constant.
These are variable with a general distribu-
tion in this paper.

Section 2 explains models and their no-
tations. Section 3 analyzes models without
walking times. Section 4 analyzes those with
walking times, obtaining the LSTs for distri-
bution functions of waiting times and mean
waiting times. Section 5 gives numerical
examples.

2. Models and Notations

For the models shown in Fig. 1, the fol-
lowing assumptions are made:

@ There are only two queues.

® There is only one server who serves
each queue alternately.

@ (Queue 1 is served according to exhaus-
tive service, and queue 2 according to gated
service or l-limited service.

@ Each queue has an infinity capacity.
@ Customers arrive at the queues accord-
ing to independent Poisson processes, and

service times and walking times are indepen-
dent distributed stochastic variables.

The notations are defined as follows:

Ai, 1=1,2 : Arrival rate of class 7 cus-
tomers,

H{(-),i=1,2 : pistribution function of
service times for class 7
customers, where hi is the

mean and A is its second
moment ,
(h(') 2 Distribution function of
walking times from queue 1
to queue 2, where u; is its

(2)
1

mean and u is its second

moment.
UA-) - Distribution function of
walking times from queue 2

to queue 1 where Uy is its

mean and %5 is its second
moment .

A=A+

u=wu+us, u?=ul’+2uiu+ uf’
pi=ul—(u.), i=1,2,

pi=Ahi, 1=1,2, p=p1+p2,
wo=(Ah{" + Ah) /2

The Laplace-Stieltjes transform of a
continuous-parameter distribution function
A(%) is represented by 4%*(z); and the gener-
ating function of a discrete-parameter dis-
tribution function B(7) is represented by
B(z).

3. Analysis of a Model without
Walking Times

3.1 Model

The model without walking times in which
the service discipline of queue 1 is exhaus-
tive and that of queue 2 is gated, is ana-
lyzed in this section.

3.2 A piecewise Markov process repre-
sentation for the model

(1) setting of an equivalent model

Figure 2 shows an equivalent model for
the analysis which consists of two queues and
each queue has infinite capacity.

Class-1 customers arrive directly at
queue B.

Class-2 customers arrive at queue A
first and transfer to queue B, Transfers are
performed by two methods: in one, immediate-
ly after all customers in queue B have been



served, all customers in queue A transfer to
queue B, and in the other, a class 2 customer
arriving when no other customers are in the
system is immediately transferred to queue B.
It is assumed that no time is required for
transferring the customers. The service dis-
cipline at queue B is first-in-first-out.

In this analytical model, the movement
of the server is replaced by the transfers of
class 2 customers. The order in which cus-
tomers are served is not changed by this re-
placement, therefore, the equivalent model
can be used to derive the mean waiting times
for the original model.

(2) Representation as the piecewise
Markov process

The number of customers in queue A are
represented as the piecewise-Markov process

(6].
Notations are defined as follows:

Na(t) : Number of customers in queue A
at time ¢

S(¢)

: State of the server at time %
(=8 : Busy, T : Idle)

Y(£)=(Na(t), S(1))

Q=(0I,0B, 1, 2, -, k, ~}:
possible state space of Y(?)

0r1=(0,1), 0B=(0, B), k=(k, B), k21

For the stochastic process {Y(?), =20}
let {fs, 720} be the times when the following
state transitions occur, where tu is zero:

DOB—0I @0I—-0B ®k—0B(k21)

From these definitions, the stochastic proc-
2ss {Y(1), 20} is a piecewise-Markov process,
the time points {l», 20} are its regenera-
tion points.

Now let us obtain the LSTs for the dis-
tribution functions of intervals between suc-
cessive regeneration points. Let there be
defined an embedded Markov chain for the
process {Y(¢), t20} as follows:

Ya=Y(tn—0), =20
The distribution functions of intervals
{n—1Is.\,m=1, 2, ..., which depend on Yn-
are defined as follows:

Gy(t)=Pr{fn‘ln—I$” Yﬂ—l:y}a yE-Q

Let us obtain the LSTs Gi(*), yEQ
for these functions are given as follows:
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e When Y, ,=OB : t, is the arrival

point of a customer in class 1 or
class 2. Therefore,

Gos*(s)=A/(A+s) (1)

@ When Yoo 1=0O[ : 1f the arrival at the
regeneration point fIa-1 is class 1,
then la—{#a-1 is a busy period for
class 1 customers or if that arrival
is class 2 customer then that is the
generalized busy period (see [7, p.
110]) of class 1 customers: its ini-
tial delay is the service time of the
class 2 customer. Therefore,

Gals)=ALGY)+ Rl (s + - 4G5 @

where G*(s) is the LST for the distribution
function of busy periods for class 1 custo-
mers, which is given by the solution of

G*(s)=H*s+A—AG*(s)) (3)

o When Yp.1=k21 : la—tn-1 is the gen-
eralized busy period for class 1 cus-
tomers: % class 2 customers transfer
to queue B at [y, hence its initial
delay is the sum of the service times
for these class 2 customers:

GXs)={H¥(s+A—AG*(s))* k21 (%)

3.3 An embedded Markov chain at regen-
eration points

(1) Transition probability matrix

Let us obtain the transition probability
matrix (Pu, v2) .

P, 2e=Pr{Ya=up| Yoo 1=u), 1, nER

o If 2w=0B, then y=0[; hence

Pos.or=1, pos,=0, y+ Ol (5)

o 1f m=0I or ;®»=k21, then HA(I‘,“—O)

is the number of class 2 customers
which arrived during interval (fn-1, ).
Therefore, letting a, be the number of

class 2 customers which arrived during
the interval and putting

0u())=Prlar=jYa-1=y), y*+ OB

the elements of the transition probability
matrix are given by

por.os= 00:(0)

pora=0culk), k21

proa=0i0), 121

pa=alk), k21

(6)




Let us obtain the generation function of
a,(-) for further calculations:

o(2)=[HNz+h—-AGX )" k21 (D
Gorl2)=2-G¥(z) +226(2) )

where 22=rAc— Az,

(2) Generating function of steady-state
distribution for the embedded Markov chain

The condition in which the steady-state
distribution exists is p<1. The generation
function of the steady state distribution My,
yEQ is defined by

H(Z)=§am2", o= Mo: + Tos

The balanced equations for the steady-state
distribution are given by

or = Mos= Oor ('0) Mot +§:1 af0)x;
7ix= oi( k) 7o +§‘: ok)m, k21 (9)

Using these equations, the generating func-
tion is given by

11(2)={do1(2) — 1} 7os + IT{01(2)) (10)
3.4 Distributions of waiting time

(1) Distribution of waiting time for
class 1 customers

Let Ql(‘) be the generating function of
the distribution for the number of class 1
customers in the system immediately after
their departure. Using this, let us obtain
the LST for the waiting time distribution
function of class 1 customers.

@Qi(+) is represented by JI(*), which is
given as Eq. (10). A steady-state process is
assumed, and an interval (ta, fr+1] for succes-
sive regeneration points is considered.

Notations are defined as follows:

@ J : The number of class 1 customers
departed during the interval

(25 $ae1)

® f:(o): The time when all services for

i Ya class 2 customers were done

@ t(J): The departure times of class 1

customers during the interval
(fn, !n+l] & where f¥’=fﬂ-1

@ V. : The number of class |l customers
which arrived during an interval
€2 i

@ ¥, : The number of class 1 customers
g in the system immediately after
time £

where j=0,1,2,, J

Let the distribution function of ». be

v(ll)=P?'{vj="—f}; Y. satisfies Xi=Xi—14v;
= o

(where j=1,2,+, J), therefore {XT., jz[} is

Markov chain having an absorbing state 0;
is the number of steps until the Markov chain

reaches the absorbing state, hence XJ = 0.

From these results the following recursive
expression for Pr{X;=m|Xo=k} is obtained:
pT{Xj= meo-“‘— k)
0, jSkand m<k—j
m+l
3 om—(r=1)Pe(Xpi=r|Xe= ),
=1 jSkand m=2k—;
m+1
Z vim=(r —1))Pr{X;-1=r| Xo=k]),

L >k (11)

Qi(+) is given by
+Q(@)= Z 2 E m EPrlXe=kl Ya=a)
P Xi=m|Xi=#)
+ A0 3 Xi= | Xo=1)
+ 28205 P X= k| Ya=1)

BPe(Xi=ml Xo=#)] (12)

where (' is the normalized constant.

In the brackets of the forementioned
equation: the first term represents the
probability that the number of class 1 cus-
tomers in the system immediately after their
departure is m in the case of ﬁ.=a?_1 ; the
second term represents that probability in
the case where Y,=0/ and a class 1 customer
arrived at tn; and the third term represents

that probahility in the case where Y,=0I
and a class 2 customer arrived at tn. Using

Eq. (11), the following expression is ob-
tained:

U= A a2 - 4)

+ A0 5 4 BT pra() - 3,2)

—(1+ 7ar)] (13)

The value of the normalized constant C
is obtained from the normalization condition
for Q:+) as follows:
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ing {tn. ru»l] .

C=[2(1-p))/(Ai7ar)

From Eqs. (13) and (14), the LST Wi*(*) for
the waiting time distribution function for
class | customers is obtaingd:

(14)

AQl—p)
Arto{H¥(s)— 1+ s/A}

[1+ 7o, — IT(H#(s))
—(mor/A) A= s + A H#(s)}]

The mean waiting time w

Wi*(s)=

(15)

| is obtained by

differentiating Eq. (15) with respect to &,
and putting s—0+

wi=[(1=p)wn]/[(1-p)(1— o1+ p2)]

(2) pistribution of waiting times for
class 2 customers

(16)

Let @:(+) denote the generating function
of the distribution for the number of class 1
customers in the system immediately after
their departure. As in class | customers,
the waiting time distribution function W:(-)
for class 2 customers is obtained by using

Let us represent Qu(+) by 17(') in Eq.
(10). 1In the following analysis, a steady-
state process is assumed and an interval

In, tn+1] for successive regeneration points
is considered.

Notations are defined as follows:
: The jth departure time of class

2 customers during interval
(fn. tnﬂ] , where f:gu]:tn.

g o
@ L

n

: Number of class 2 customers who
arrived during interval (#7",

1]

Number of class 2 customers in
the system just after time f5’
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sv(7)=Pr{v,=1}.

Using these notations, @:°) is given by

Lo Fe A atm

a &
+§m§l’r{){,=m|Xa=k}] (17)
where (' is a normalized constant. 1In the

brackets in the right-hand of Eq, (17); the
first term represents the probability that
the number of class 2 customers in the system
immediately after their departure is m in the
case where Ya=0/ and a class 2 customer ar-
rived at t"; the second term represents that

probability in the case of Yx=kK=21, Using
the same procedure as for class 1, the LST

?*(+) for the waiting time distribution
function for class 2 customers is obtained as
follows:

W (s)=(1-p)
+ AQ—p) M(HX(s))~11(1-s/A)

(18)

A2 H:(S)"I‘FSI'{!
The mean waiting time is given by
wr=[(1+pdwo] /[[(1-p)1—ps+p2)] (19

¥y and v, satisfy the following conservation

law [7, p. 113]:

A1+ pruwr= pwo/(1—p) (20)

4. Analyses of Models with Walking Times

Let Fi(+) denote the generating function
of the distribution for the number of custo-
mers in queue 7 just before the time when the
server arrived in this queue. Using Fﬁ(').
the LST for the waiting time distribution for
class i customers is given as follows:

® If queue 7 is serviced according to
exhaustive service,

1—p: 1—Fi(1—=s/A)
Fi(1) H*(s)—1+s/A:

Wi*(s)=

e If queue 7 is serviced according to
gated service,

F{Hs)~ Fi(1-5/A))

WH(s)= FOH ) —1+3/A)

e If queue 7 is serviced according to 1-
limited service,

Fr(l = SM;—) P F-(O')
(1-5/4)(1 - F.(0))

W*(s)=

where




Fi1)= lim(d/dz)F{2)

Therefore, Fi(*), and Fi(+) give the LST's for
the waiting distributions. In the following
sections, a model with mixed exhaustive and
gated services is analyzed first. Then a
model with mixed exhaustive and l-limited
services is analyzed.

4.1 Analysis of a model with mixed

exhaustive and gated services

The procedure of the analysis is as fol-
lows: the generating function of the distri-
bution for the number of class Z customers in
the system immediately after the server's de-
parture from queue | is obtained first; Fi(+),
and F:+) are represented by this generation
function. Then substituting them into Egs.
(21) and (22), the LSTs of the waiting time
distributions are obtained.

(1) Model

Exhausted service is applied to queue 1,
and Gated service is applied to queue 2.

(2) Distribution of the number of cus-
tomers immediately after departure of the
server

Let us consider a time when the server
departed from queue !. The number of custo-
mers in queue | immediately after this time
is always zero. Therefore, a one-dimensional
Markov chain for the number of customers in

queue 2 can be used for the analysis (see Fig.

3y
Notations are defined as follows:
{h] : Time when the server departed
from queue 1
N» : Number of customers in queue 2
immediately after [»
{t#ﬂ : Time when the server arrived at
queue 1.
N g Numbﬁf of customers in queue 1
at In

{87} : Time when the server arrived at

queue 2

N2 . Numberof customers in queue 2 at
Ia

U1 i Number of class 1 customers ar-
rived during interval (f,f5")

vz : Number of class 2 customers ar-

rived during interval (fa, £5%']
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T : Walking time from queue 1 to queue
2

Ti : Sum of service times for ﬁr class
2 customers

Tz : Sum of service times for vy class
2 customers

T : Walking time from queue 2 to queue

1

Ti : Sum of service times for vl class

1 customers

r=n+nt+otn

W=t~ T e

The condition that the stochastic proc-
ess {Nu. n20} has a steady-state distribution
is p<1. Assuming this condition, let us ob-
tain the generating function JI(*) of the
steady-state distribution {lj, j > 0} of the
stochastic process.

From Fig. (3), Niasi is the number of
class 2 customers arriving during interval
(t59, tas1). Since it was assumed that the ar-
rival processes were Poisson, the transition
probability P#j of the stochastic process can

be represented using a conditions distribu-

tion for o as follows:

Guf)=PrimstIN.= k]

po= [ B exp(~aut)dGU1), 5,j=0,1,2,

where "o is a generalized busy period for

class 1 customers : its initial delay is 1.

The LST for the conditional distribution

function for v is given as follows:
G.(t:k)=Pr{r S tIN,=k}, k=0,1, -
G¥(s;k)=U¥(a) U(s){HF(s)}*

(24)

(25)
a=A—AH¥s)+ A—AH¥(s)
#(25) & G+ »@Eon3,
GH(s)=UMB—s+—AaHHB))
-UXB)(HF (B (26)

B=$+(‘;_AIG*(S)

where G*(*) is the LST for the distribution
function of the generalized busy period for
class 1 customers, and this is given by Eq.

3).

From Eq. (24), the generating function

of pij with respect to j is given by

gz‘pu=6?(/h—~hz), §=0,1,2,+ (27




From Eqs. (26) and (27), and from

anced equations

bal-

?i].:g?ﬁﬂa, }”:0. 1, 2,

the following equation is obtained:
11(2)= Utg+ Az— AH (@) UMD IT(H(9))
g=A—Az—AG*(la—A2) (28)

(3) Distributions of waiting times

The LST for the waiting time distribu-
tion function and the mean waiting time for
each class are shown. In the following ana-
lysis, a steady state process is assumed.

(a) Distribution of waiting times for
class 1 customers Fi(*) is represented by

Fl(z)=§zz’Pr{N§”=f] (29)

As shown in Fig. 3, N;" is the number of
class 1 customers arriving during interval
(fa, t"]. By putting

P-p=

Ta= ntatoatn

let us obtain the LST for the distribution
function of Ta. Since fo+ 1, Ty, and 73 are
mutually independent for given Na.=]J, the
following equation is obtained:

E[exp(— sta)|Na=/]
= UF(s+ Aa— AH¥(s)) U (s HZ (s)Y
j=0,1,2, -

By using this, the LST for the distribution
function of 7. is given as

Elexp(—sta)]= U¥(s + A — 2H#(s))

(30)

- UX(s)IT(HZ(s)) (31)
From this equation, Fi(+) is given as
Fi(2)=Elexp(— (A —A2) )
= Ui*(/ll_ill.Z‘l'Al_/‘sz*(Al—IIIZ))
2 Uz*(AI_IIIZ)H(HZ*(IL —Rlz)) (32)

The LST WA*(s) for the waiting time distribu-
tion function of class 1 customers is ob-

tained by substituting Eq.
The mean waiting time m is given by

—p1) (1—p)(¢h + &)
== bupgim) mfm+mw

+ = p u  pA1—p)(1+p2)¢h
-0 (1—p1+p2)u

(33)

(b) Distribution of waiting times for
class 2 customers

(32) into Eq. (21).
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Fz(') is represented by

Fz(z)=§z-‘Pr{Na+vz=;'} (34)
Since Npand 2 are mutually independent, the
following equation is obtained:

Fz(z): Ut*(/iz— &Z)H(Z)

By substituting Eq. (35) into Eq. (22), the
LsT W:*(s) for the waiting time distribution
function of class 2 customers is obtained.
The mean waiting time Wy is given by

(35)

b A+pdwe _, (1+p)(¢s+¢)
(1“‘9)(1 PI+P2) 2(1 P1+Pz)u

+L1 _ (1= p)(1+ p2)¢h

21— p (I—pi+pu (36)
wl and mz satisfy the following pseudoconven-
tion law:

(2)
__pwo  pu® | papu
o+ Pz 1—p+ 2u 1-p (37)

4.2 Analyses of a model with mixed
exhaustive and l1-limited services

Since the analyses procedure for this
model is almost the same as before, the re-
sults only are shown below.

(1) Model

Queue 1 is served according to exhaustive
cervice, and queue 2 according to the 1-
limited service.

(2) Distribution of the number of cus-
tomers immediately after departure of the
server

Since the number of customers in queue 1
immediately after a server's departure from
this queue is always zero, the number of
class 2 customers at these times can be rep-
resented as a one-dimensional Markov chain.
The generating function [J(2) of the steady-
state distribution {llj, j > } for this Markov
chain is obtained by the same method as in
section 4.1. The condition that this steady-
state distribution exists is given by

pt+Au<l

1(z) is given by

_ Urlg+a2)U2(o)lz— HE
Ma)=="""0 ) U aH (g

(38)
g=A—Az—AG*(A—A2)

From this normalized condition for [IT(2z) the
value of i) is given by
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m=01—p—Au)/{U¥A)1-p)} (39)
(3) Distributions of waiting times

By using the results of section (2), let
us shown the LST for the waiting time distri-
bution function and the mean waiting time for
each class in steady state. The condition
that steady state exists is @ <1 for queue
1, and p+Au<1 for queue 2. Therefore, if
0<1 and p+Au21, after long run queue 1
is the steady state and queue 2 is saturated.
In this case, the waiting time of queue 1 can
be obtained by using the results of vacation
models [8, p.302]. If p+Au<l, after along

run, both queue 1 and queue 2 are in steady
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Fig. 5. A comparison of mean waiting
times (with walking times).

state. In the following sections, this case
is discussed.

(a) Distribution of waiting times for
class 1 customers

Let us consider a period from the depar-
ture of the server from queue 1 to its return
to the queue. This period depends on the num-
ber of customers in queue 2 immediately be-
fore the server arrived at the queue. If
this number of customers is zero, the period
is the sum of two successive walking times.
Otherwise, the period is the sum of the two
successive walking times and a service time
for one class 2 customer.



The number of customers in queue 1 imme-
diately before the server arrived at the
queue is the number of class 1 customers who
arrived during that period. Therefore,

Fi(2)=mU*(A+ 2) U 2)(1 - H (21))
+ UM 2) U (2)Hi*(2)
_312

(40)
a=A
is obtained.

The LST Wi*(s) for the waiting time dis-
tribution function is obtained by substitut-
ing Eq. (40) into Eq. (21). The mean waiting
time is given by

- §U;%§Az) ha(l — p—Asut)
- i Ul = P|
urhz
2&!(1 95 101 31 P (61)

(b) Distribution of waiting times for
class 2 customers

The number of customers in queue 2 imme-
diately before the server arrived at the
queue is the sum of the number of class 2
customers in queue 2 immediately after the
server departed from queue 1 and the number
of customers arrived during its walking time
from queue 1 to queue 2. Since these two

numbers are mutually independent, the follow-
ing equation is obtained:
Fi2)=U*(A— 42)11(2) (42)

By substituting Eq. (42) into Eq. (23),
the LST W:*(s) for the waiting time distribu-
tion for class 2 customers is obtained. The

mean waiting time is given by

(U (A)e:i(1—p)
U¥(A2) Azre(1 — Pl)

_e(l—plu
32(1 == p;)u

oo "
(I_PNI'P_&U)

+ L
-p)0—-p—Au)

i (Y—p)u'

20— p)(1—p—Art)u

(43)

wy and Wy satisfy the following pseudoconven-
tion law:
u®
u
prun+ pal1—7 4 P)w —'9—-+-§%+&E;—

(44)

5. Numerical Examples

Using numerical examples, the dependence
of mean waiting times on the combination of
service disciplines is shown. In models dis-
cussed in this section exhaustive service is
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always applied to queue 1, and gated service
or 1-limit service is applied to queue 2,
The service time distribution for each class
is exponential, whose mean value is one, and
walking times are constant, whose values are
Bsla

Figure 4 shows a comparison of mean
waiting times for models without walking
times. Note, in this case, the model with
mixed exhaustive and 1-limit services corre-
sponds to a nonpreemptive priority model.
When 7, is greater than Py as shown in Fig.

4(a), the mean waiting times of queues 1 and
2 have little difference. When Py is smaller

than P, as shown in Fig. 4(b), there is a

large difference in the mean waiting time in
queue 1, but little difference in queue 2.
This shows that waiting times for class 1
customers are influenced more easily by class
2 customers in the model with gated service
than that in the model with l-limited service.

Figure 5 shows a comparison of mean
waiting times for the models with walking
times. When o is greater than 0, as shown

in Fig. 5(a), the behavior of waiting times
is similar to that in Fig. 4(a). When p, 1s

smaller than g0 the mean waiting time of

queue 2 in the model with 1-limit service is
rather long. This is due to the fact that
the server always takes a walking time after
serving a class 2 customer, in this model.

6. Conclusions

A single server model, in which queue 1
is served according to exhaustive service and
queue 2 is served according to gated service
or l-limit service, was analyzed by using the
generating function method; and the LSTs for
waiting time distribution functions and mean
waiting times were obtained. Differences be-
tween mean waiting time for class | customers
and that for class 2 customers due to combi-
nations of service disciplines were shown us-
ing numerical examples.

Analysis of a model in which the number
of queues is expanded to N (i.e., a general
case), and analysis of models combined with
other service disciplines, such as K-limit
gservice,which means that the server serves
maximum K customers in a queue when it visits
the queue, will be subjects of future study.
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