----- オイラーの関数 ----

 $\{1,2,\ldots,n\}$ の中で n と互いに素である数の個数を $\phi(n)$ で表し、 ϕ をオイラーの関数という。

例えば、 $\{1,2,3,4,5,6\}$ の中で 6 と互いに素なのは 1,5 の 2 個であるから、 $\phi(6)=2$ である。また、 $\{1,2,3,4,5,6,7\}$ の中で 7 以外は全て 7 と互いに素だから、 $\phi(7)=6$ である。

一般に、素数 p に対して、 $\phi(p)=p-1$ が成り立つ。なぜなら、 $\{1,2,3,\ldots,p\}$ の中で p 以外は全て p と互いに素であるからである。

また、異なる素数 p,q に対して、 $\phi(pq)=(p-1)(q-1)$ が成り立つ。なぜなら、 $\{1,2,3,\ldots,pq\}$ の中で、p の倍数は $p,2p,3p,\ldots,(q-1)p,qp$ の q 個、q の倍数は $q,2q,3q,\ldots,(p-1)q,pq$ の p 個、p と q の公倍数は pq の 1 個であるから、 $\phi(pq)=pq-(p$ の倍数)-(q の倍数)+(p と q の公倍数)=pq-q-p+1=p(q-1)-(q-1)=(p-1)(q-1) となるからである。

— RSA 暗号 —

鍵の生成 自然数 n, e, d を次の (1), (2), (3) をみたすようにとる。

- (1) 異なる素数 p,q により、n=pq
- (2) $\phi(n) = (p-1)(q-1)$ と互いに素な e
- (3) $ed \equiv 1 \pmod{\phi(n)}$ となる d

暗号化 自然数に変換した平文 x に対し、 $y \equiv x^e \pmod{n}$ ($0 \le y < n$) となる暗号文 y を求める。

復号化 暗号文 y に対して、 $z \equiv y^d \pmod{n}$ $(0 \le z < n)$ となる z を求める。 z はもとの平文 x に一致する。

ここで、n,e は暗号化鍵(公開鍵)で、d(または p,q)は複合化鍵(秘密鍵)である。

例えば、p=3,q=11 とし、平文 x=7 13 17 24 を RSA 暗号により暗号化してみよう。下記の表は、1 から 32 までの数の、1 から 21 までのベキ乗を求め、33 を法として求めたものである。

鍵の生成 自然数 n, e, d を次の (1),(2),(3) をみたすようにとる。

- (1) $n = 3 \times 11 = 33$
- (2) $\phi(3 \times 11) = (3-1)(11-1) = 20$ と互いに素な e を 3 とする。
- (3) $3d \equiv 1 \pmod{20}$ となる d = 7

暗号化 自然数に変換した平文 x に対し、

- $y \equiv 7^3 \equiv 13 \pmod{33} \ (0 \le y < 33)$
- $y \equiv 13^3 \equiv 19 \pmod{33} \ (0 \le y < 33)$
- $y \equiv 17^3 \equiv 29 \pmod{33} \ (0 \le y < 33)$

	暗号化							復号																
	_/			1				べき乗数										3						
		1	2	3	4	5	6	- 7	8	9	10	11	12	13	14	15	16	17	18	19	20	21		
この世界の数	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
	2	2	4	8	16	32	31	29	25	17	1	2	4	8	16	32	31	29	25	17	1	2		
	3	3	9	27	15	12	3	9	27	15	12	3	9	27	15	12	3	9	27	15	12	3		
	4	4	16	31	25	1	4	16	31	25	1	4	16	31	25	1	4	16	31	25	1			
	5	5	25	26	31	23	16	14	4	20	1	5	25	26	31	23	16	14	4	20	1	<u>4</u> 5		
	6	6	3	18	9	21	27	30	15	24	12	6	3	18	9	21	27	30	15	24	12	6		
	7	7	16	13	25	10	4	28	31	19	1	-7	16	13	25	10	4	28	31	19	1	<u>6</u> 7		
	8	8	31	17	4	32	25	2	16	29	1	8	31	17	4	32	25	2	16	29	1	- 8		
	9	9	15	3	27	12	9	15	3	27	12	9	15	3	27	12	9	15	3	27	12	9		
	10	10	1	10	1	10	1	10	1	10	1	10	1	10	1	10	1	10	1	10	1	10		
	11	11	22	11	22	11	22	11	22	11	22	11	22	11	22	11	22	11	22	11	22	11		
	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12		
	13	13	4	19	16	10	31	7	25	28	1	13	4	19	16	10	31	7	25	28	1	13		
	14	14	31	5	4	23	25	20	16	26	1	14	31	5	4	23	25	20	16	26	1	14		
	15	15	27	9	3	12	15	27	9	3	12	15	27	9	3	12	15	27	9	3	12	15		
	16	16	25	4	31	1	16	25	4	31	1	16	25	4	31	1	16	25	4	31	1	16		
	17	17	25	29	31	32	16	8	4	2	1	17	25	29	31	32	16	8	4	2	1	17		
	18	18	27	24	3	21	15	6	9	30	12	18	27	24	3	21	15	6	9	30	12	18		
	19	19	31	28	4	10	25	13	16	7	1	19	31	28	4	10	25	13	16	7	1	19		
	20	20	4	14	16	23	31	26	25	5	1	20	4	14	16	23	31	26	25	5	1	20		
	21	21	12	21	12	21	12	21	12	21	12	21	12	21	12	21	12	21	12	21	12	21		
	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22		
	23	23	1	23	_	23	1	23	1	23	1	23	1	23	_	23	1	23	1	23	1	23		
	24	24	15	30	27	21	9	18	3	6	12	24	15	30	27	21	9	18	3	6	12	24		
	25	25	31	16	4	1	25	31	16	4	1	25	31	16	4	1	25	31	16	4	1	25		
	26	26	16	20	25	23	4	5	31	14	1	26	16	20	25	23	4	5	31	14	1	26		
	27	27	3	15	9	12	27	3	15	9	12	27	3	15	9	12	27	3	15	9	12	27		
	28	28	25	7	31	10	16	19	4	13	1	28	25	7	31	10	16	19	4	13	1	28		
	29	29	16	2	25	32	4	17	31	8	1	29	16	2	25	32	4	17	31	8	1	29		
	30	30	9	6	15	21	3	24	27	18	12	30	9	6	15	21	3	24	27	18	12	30		
	31	31	4	25	16	1	31	4	25	16	1	31	4	25	16	1	31	4	25	16	1	31		
	32	32	1	32	1	32	1	32	1	32	1	32	1	32	1	32	1	32	1	32	1	32		

図 1: RSA 暗号の世界 http://www.maitou.gr.jp/rsa/rsa10.php より引用

• $y \equiv 24^3 \equiv 30 \pmod{33} \ (0 \le y < 33)$

となる暗号文y=13192930を求める。

復号化 暗号文 y に対して、

- $z \equiv 13^7 \equiv 7 \pmod{33} \ (0 \le z < 33)$
- $z \equiv 19^7 \equiv 13 \pmod{33} \ (0 \le z < 33)$
- $z \equiv 29^7 \equiv 17 \pmod{33} \ (0 \le z < 33)$
- $z \equiv 30^7 \equiv 24 \pmod{33} \ (0 \le z < 33)$

となる z=7 13 17 24 を求める。 z はもとの平文 x に一致する。

ここで、<u>暗号化鍵 n=33 と e=3 のみ公開する。</u>(複合化鍵 d=7 (または、p=3,q=11) は秘密にする。)そして、<u>暗号文 y=13 19 29 30 を送信する。</u>複合化鍵 d=7 は相手しか知らないので、他の人は暗号文から平文に複合することはできない。

RSA 暗号は、二つの素数 p,q から n=pq を求めることは易しいが、n から p,q を求めることは難しいことが、安全性の基となっている。安全性の為に、300 桁以上の n を用いることが推奨されている。

問題

暗号化鍵をn = 133, e = 5とする。

暗号文がy = 44,13,91,13のとき、元の平文zを求めよ。