Closed incompressible surfaces of genus two in 3-bridge knot complements

Makoto Ozawa (Komazawa University)

May 23, 2006
Bridge number $b(K)$ **and genus** $g(F)$

$K \subset S^3$: knot

$F \subset S^3 - K$: closed incompressible surface

<table>
<thead>
<tr>
<th>$g(F)$</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>$b(K)$</td>
<td>1</td>
<td>φ</td>
<td>φ</td>
<td>φ</td>
<td>φ</td>
<td>φ</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>φ</td>
<td>φ</td>
<td>φ</td>
<td>φ</td>
<td>φ</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Hatcher-Thurston
- This work
- Schubert
Meridionally compression and tubing

F is incompressible $\Rightarrow F'$ is also incompressible

F' is incompressible $\Rightarrow F$ may not be incompressible
The case that $g(F') = 2$
Theorem I

K: 3-bridge knot or link

$F \subset S^3 - K$: closed incompressible and meridionally incompressible surface of genus two

\Rightarrow

I-a I-b I-c
Theorem II

K: 3-bridge knot or link

$F \subset S^3 - K$: closed incompressible and meridionally incompressible surface of genus one

\Rightarrow

\[\text{II-a} \quad \text{II-b} \quad \text{II-c}\]
Theorem III

\(K : 3 \)-bridge knot or link

\(F \subset S^3 - K \): closed incompressible and meridionally incompressible surface of genus zero

\(\Rightarrow \)

III-a

III-b
Corollary

Any essential 2-string tangle decomposing sphere for 3-bridge knots bounds a length 2 or 3 Montesinos tangle.
The case that $g(F) \geq 3$

Problem [Hayashi, 1996]
Does there exist closed incompressible and meridionally incompressible surface of genus greater than 2 in the complement of 3-bridge knots?

Theorem IV
Yes, for all $g \geq 2$.

Theorem [Muñoz-Coto, 2004]
There exists a hyperbolic 3-bridge knot which contains quasi-Fuchsian surfaces of arbitrarily high genus.
totally knotted spatial graph
Proof of Theorem I, II and III

Let $f : S^3 \rightarrow \mathbb{R}$ be a Morse function with two critical points.

Put K in a bridge position with respect to f.

Let F be a closed incompressible and meridionally incompressible surface.

Lemma A

One of the following holds.

1. K is a split link.
2. K is not thin position.
3. After an isotopy of K and F, there exists a level sphere $S = f^{-1}(x)$ such that each component of $S \cap F$ is essential in both $S - K$ and $F - K$.
Lemma B

Let \((B,T)\) be a trivial \(n\)-string tangle and \(P\) an incompressible surface in \((B,T)\). Then, one of the following holds.

1. \(P\) is a disk with \(P \cap T = \emptyset\) and separates \((B,T)\) into two trivial tangles.
2. \(P\) is a disk with \(|P \cap T| = 1\) and separates \((B,T)\) into two trivial tangles.
3. \(P\) is \(\partial\)-compressible.

Using Lemma B inductively, we can classify incompressible and meridionally incompressible surfaces in the trivial 3-string tangle as follows.
By Lemma A and the classification of incompressible and meridionally incompressible surfaces in the trivial 3-string tangle, we obtain Theorem I, II and III.

I-a