Essential state surfaces for knots and links

Makoto Ozawa (Komazawa University)

November 2, 2007

Constructing σ -state surfaces

K: a knot or link in S^3

D: a diagram of K on S^2

 $C = \{c_1, \dots, c_n\}$: the set of crossings of D $\sigma: C \to \{+, -\}$: a state for D

For each crossing $c_i \in \mathcal{C}$, we take a +-smoothing or --smoothing according to $\sigma(c_i) = +$ or -.

Then, we have a collection of loops l_1, \ldots, l_m on S^2 and call those **state loops**.

 $\mathcal{L}_{\sigma} = \{l_1, \dots, l_m\}$: the set of state loops

The union of state loops $l_1 \cup \cdots \cup l_m$ bounds mutually disjoint disks $d_1 \cup \cdots \cup d_m$ in B_- .

We attach a half twisted band b_j to disks d_i, d_k so that it recovers the crossing c_j .

Then, we obtain a spanning surface which consists of disks d_1, \ldots, d_m and half twisted bands b_1, \ldots, b_n and call this a σ -state surface F_{σ} .

Historical remarks

Historical remarks.

- 1. The state surfaces corresponding to the positive state σ_+ and negative state σ_- were considered for alternating links already in XIX century by Tait (and are called Tait surfaces).
- 2. The state surface corresponding to the Seifert state $\vec{\sigma}$, which gives the Seifert surface, was introduced by H. Seifert.
- 3. Independently, Prof. Jozef H. Przytycki had already thought about the concept of using a surface for any Kauffman state.

Constructing σ -state graphs and Definitions

We construct a graph G_{σ} from F_{σ} by regarding a disk d_i as a vertex v_i and a band b_j as an edge e_j which has the same sign $\sigma(c_j)$.

We call the graph G_{σ} a σ -state graph.

Definition

- D is σ -adequate
 - $\iff G_{\sigma}$ has no loop
- D is σ -homogeneous
 - \iff in each block of G_{σ} , all edges have a same sign

Example 1.

Let D be a diagram of the figure eight knot which has 4-crossings c_1, c_2, c_3, c_4 as Figure.

To make a σ -state surface, let σ be a negative state, i.e.

$$\sigma(c_1) = \sigma(c_2) = \sigma(c_3) = \sigma(c_4) = -$$

Since the σ -state graph G_{σ} has no loop and all edges have a - sign, D is σ -adequate and σ -homogeneous.

Example 2.

Let D be a diagram of the figure eight knot which has 4-crossings c_1,c_2,c_3,c_4 as Figure.

To make a σ -state surface, let σ be a Seifert state, i.e.

$$\sigma(c_1) = \sigma(c_2) = -$$
 and $\sigma(c_3) = \sigma(c_4) = +$

Examples

Since the σ -state graph G_{σ} has no loop and all edges in each block have a same sign, D is σ -adequate and σ -homogeneous.

Example 3. Any positive diagram D is σ_+ -adequate and σ_+ -homogeneous for the positive state σ_+ .

Example 4. Any alternating diagram D without nugatory crossings is σ_{\pm} -adequate and σ_{\pm} -homogeneous for the positive or negative state σ_{\pm} , and $\vec{\sigma}$ -adequate and $\vec{\sigma}$ -homogeneous for the Seifert state $\vec{\sigma}$.

Example 5. For any arborescent link L such that an absolute value of each weight is greater than 1, there exists a diagram D of L and a state σ such that D is σ -adequate and σ -homogeneous. Indeed, an arborescent link L is the boundary of a σ -state surface which is a Murasugi sum of twisted annuli or Möbius bands.

Example 6. By the definitions, homogeneous links (introduced by P. R. Cromwell), and semi-adequate links (introduced by W. B. R. Lickorish and M. B. Thistlethwaite) have σ -adequate and σ -homogeneous diagrams for some state σ .

Here, a diagram D is **homogeneous** if in each block of $G_{\vec{\sigma}}$, all edges have a same sign. Since $F_{\vec{\sigma}}$ is a Seifert surface, a homogeneous diagram is automatically $\vec{\sigma}$ -adequate.

Also, a diagram D is **semi-adequate** if G_{σ_+} or G_{σ_-} has no loop. In either case, a semi-adequate diagram D is automatically σ_+ -homogeneous or σ_- -homogeneous.

Incidentally, a diagram D is **adequate** if it is both σ_+ -adequate and σ_- -adequate.

The inclusion relations of various classes of knots and links are illustrated in Figure.

Here, the dotted line indicates that almost all algebraic links have σ -adequate and σ -homogeneous diagrams for some state σ , but some algebraic links seem to be not σ -adequate and σ -homogeneous for any state σ .

Main results

Theorem 1

If a diagram is σ -adequate and σ -homogeneous, then the σ -state surface is π_1 -essential.

Theorem 2

Let K be a knot or link which admits a σ -adequate and σ -homogeneous diagram D without nugatory crossings. Then,

- (1) D is non-trivial $\iff K$ is non-trivial.
- (2) D is non-split $\iff K$ is non-split.

Let D be a reduced, prime, alternating diagram. Then, a checkerboard surface is π_1 -essential.

This shows that subsurfaces F_i corresponding to each block of G_{σ} is π_1 -essential.

Lemma 2 —

Let F_1 and F_2 be π_1 -essential spanning surfaces. Then, F_1*F_2 is also π_1 -essential, where * denotes the Murasugi sum (or *-product).

This shows that the σ -state surface F_{σ} is also π_1 -essential, since it can be obtained from subsurfaces F_i by the Murasugi sums.

Problem.

- 1. Show that there exists a knot which has no σ -adequate and σ -homogeneous diagram. Furthermore, characterize the nature of knots and links which have σ -adequate and σ -homogeneous diagrams.
- 2. Determine primeness, satelliteness, fiberness, smallness and tangle decomposability from a given σ -adequate and σ -homogeneous diagram.
- 3. Show that for a given knot, the number of all σ -adequate and σ -homogeneous diagrams without nugatory crossings is finite.
- 4. Classify all knots and links which have σ -adequate and σ -homogeneous diagrams.