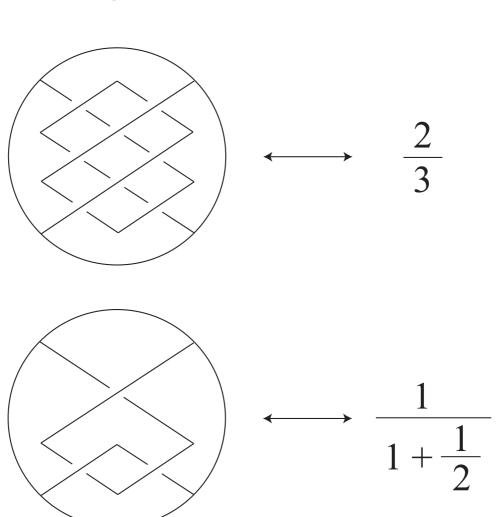
Rational structure on algebraic tangles and closed incompressible surfaces in the complements of algebraically alternating knots and links

Makoto Ozawa Komazawa University

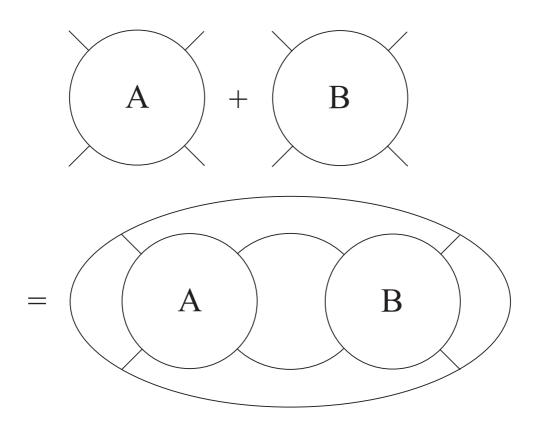
May 4, 2008

Conway

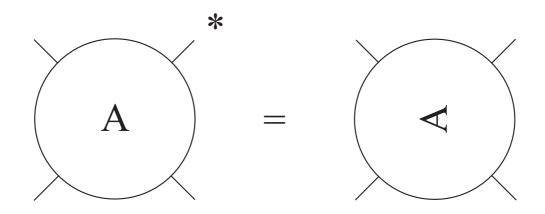
rational tangle rational number



tangle sum

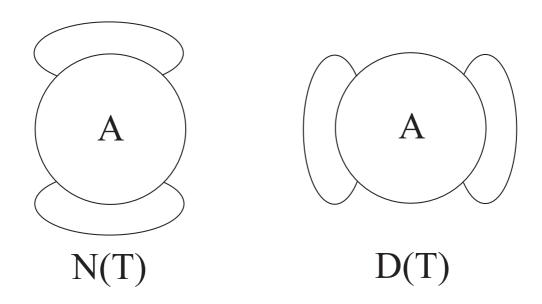


rotation



Reflection

Numerator and denominator



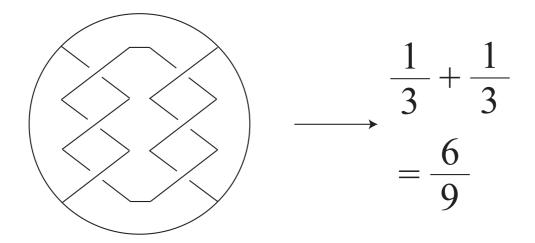
rational tangle

algebraic tangle

tangle

Krebes

2-string _____ formal tangle fraction



- $f(T_1 + T_2) = f(T_1) + f(T_2)$
- $\bullet \ f(-T) = -f(T)$
- $\bullet \ f(T^*) = -\frac{1}{f(T)}$
- f(T) = p/q $\Rightarrow |p| = \det N(T) \text{ and } |q| = \det D(T)$

Hereafter, we say that a surface is **essential** if it is

incompressible, meridionally incompressible and not boundary-parallel.

– Theorem 1 –

(B,T): an algebraic tangle

 $F\subset B-T$: an essential surface

 \Rightarrow

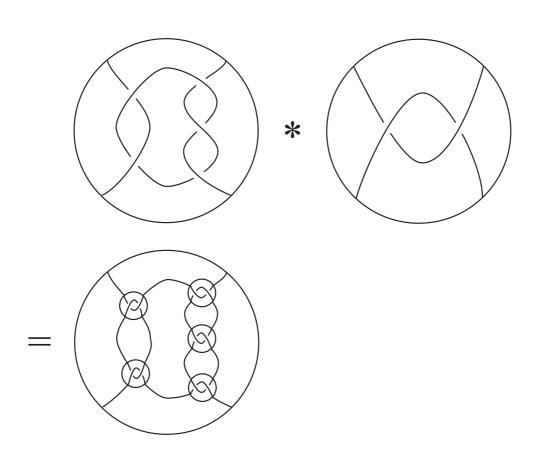
- ullet F separates the components of T in B
- ullet the boundary slopes of essential surfaces in B-T are unique

Example 1

$$-\frac{1}{3} + \frac{1}{3} = 0$$

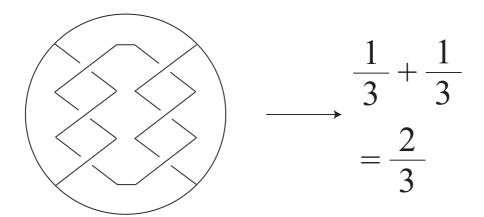
Example 2

Multiplication



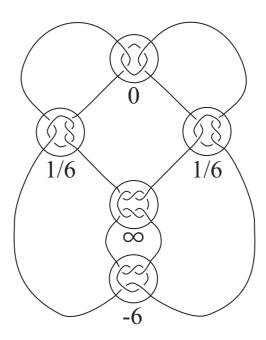
Theorem 2

algebraic ______ boundary tangle slope

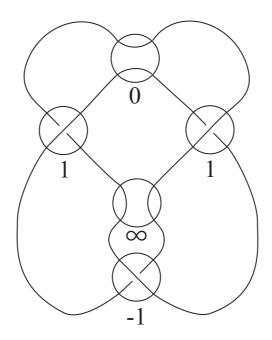


- $\phi(T_1 + T_2) = \phi(T_1) + \phi(T_2)$
- $\phi(T_1 * T_2) = \phi(T_1)\phi(T_2)$
- $\bullet \ \phi(-T) = -\phi(T)$
- $\bullet \ \phi(T^*) = -\frac{1}{\phi(T)}$

Algebraically alternating link

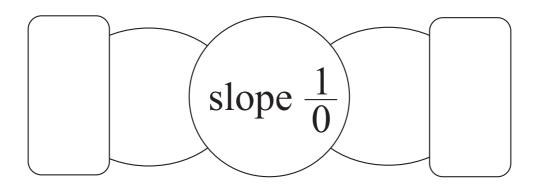


 $ilde{K}$: algebraically alternating link diagram

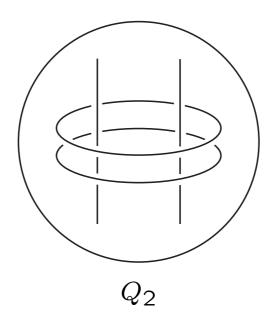


 $ilde{K_0}$: the basic diagram of $ilde{K}$

cut tangle



 Q_2



Theorem 3

 (S^3,K) : an algebraically alternating link $F\subset S^3-K$: an essential closed surface $\vec{\ }$

- F separates the components of K in S^3
- \tilde{K}_0 is split or F is contained in an algebraic tangle of (S^3,K)
- If $F = S^2$, then there exists a cut tangle
- If $F = T^2$ and there exists no cut tangle, then (S^3, K) contains Q_2

Corollary

 (S^3,K) : an algebraically alternating knot $F\subset S^3-K$: a closed incompressible surface $\Rightarrow F$ is meridionally compressible

Proof of Theorem 1

Key Lemma 1 $(B,T) = (B_1,T_1) + (B_2,T_2)$ $\Rightarrow \{\text{essential surface in } B-T\}$ $= \{\text{essential surface in } B_1 - T_1\}$ $+ \{\text{essential surface in } B_2 - T_2\}$

$$(B,T) = (B_1,T_1) + (B_2,T_2)$$

 $F = F_1 + F_2$
 F_1 separates T_1 in B_1
 F_2 separates T_2 in B_2
 $\Rightarrow F$ separates T in B

- Key Lemma 3 -

(B,T) : rational tangle of slope p/q $F\subset B-T$: essential surface

 $\Rightarrow F$ is a disk separating T and its boundary slope is equal to p/q

Proof of Theorem 2

 $\phi(T_1+T_2)=\phi(T_1)+\phi(T_2)$ follows the proof of Key Lemma 1 and 2.

 $\phi(-T) = -\phi(T)$ holds since a reflection changes the boundary slope -1 times.

 $\phi(T)\phi(T^*)=-1$ follows that a rotation changes the boundary slope reciprocally and times -1 by an orthogonal condition.

 $\phi(T_1*T_2) = \phi(T_1)\phi(T_2)$ is shown by an induction of the length of $T_1 = T_{11} + T_{12}$.

$$\phi(T_1 * T_2) = \phi((T_{11} + T_{12}) * T_2)$$

$$= \phi(T_{11} * T_2 + T_{12} * T_2)$$

$$= \phi(T_{11} * T_2) + \phi(T_{12} * T_2)$$

$$= \phi(T_{11})\phi(T_2) + \phi(T_{12})\phi(T_2)$$

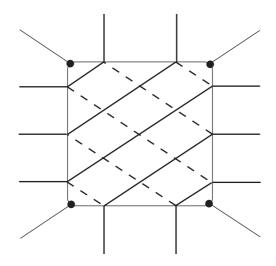
$$= (\phi(T_{11}) + \phi(T_{12}))\phi(T_2)$$

$$= \phi(T_{11} + T_{12})\phi(T_2)$$

$$= \phi(T_{11})\phi(T_2)$$

Proof of Theorem 3

In the algebraically alternating diagram \tilde{K} , we put an essential surface F in a "standard position".



an intersection with an algebraic tangle of slope 2/3

By the alternating property of the basic diagram $\tilde{K_0}$, a Menasco-like argument works.

In consequence, it follows that F intersects algebraic tangles only in one of slope 0 or ∞ .

This shows that $\tilde{K_0}$ is split.