Rational structure on algebraic tangles and closed incompressible surfaces in the complements of algebraically alternating knots and links

Makoto Ozawa Komazawa University

In 1970, Conway ([1]) showed that the rational tangles correspond to the rational numbers in one-to-one. In 1999, Krebes ([2]) constructed a map from tangles to formal fractions (not necessarily reduced), and the map on the algebraic tangles is surjective.

Conway's correspondence

Krebes's correspondence

Theorem 1. Let (B,T) be an algebraic tangle, $F \subset B-T$ an essential surface. Then, F separates the components of T in B. Moreover, B-T contains at least one essential surface, and the boundary slope of essential surfaces are unique.

$$-\frac{1}{3} + \frac{1}{3} \qquad 0$$

$$-\frac{1}{3} + \frac{1}{2} = \frac{1}{6} \qquad -6$$

$$-6 + 6 \qquad 0$$

By Theorem 1, a map ϕ from algebraic tangles to the boundary slopes of essential surfaces is defined.

We define the multiplication $T_1 * T_2$ of two tangles T_1 and T_2 like a figure.

Theorem 2. The map ϕ is a homomorphism from algebraic tangles to rational numbers. Namely, the following hold.

- $\phi(T_1 + T_2) = \phi(T_1) + \phi(T_2)$
- $\phi(T_1 * T_2) = \phi(T_1)\phi(T_2)$
- $\bullet \ \phi(-T) = -\phi(T)$
- $\phi(T^*) = -\frac{1}{\phi(T)}$

Here, + denotes the tangle sum, * the tangle multiplication, - the reflection and * the rotation.

In Conway notation \tilde{K} , we replace each algebraic tangle T with a rational tangle of slope +1 (resp. -1, 0, ∞) if $\phi(T) > 0$ (resp. $< 0, = 0, = \infty$), and the resultant diagram \tilde{K}_0 is called the basic diagram of \tilde{K} . We say that \tilde{K} is algebraically alternating if $\tilde{K_0}$ is alternating, and that K is algebraically alternating if K has an algebraically alternating diagram. The class of algebraically alternating links contains both of algebraic links and alternating links.

 $ilde{K}$: algebraically alternating diagram $ilde{K_0}$: basic diagram of $ilde{K}$

Theorem 3. Let (S^3, K) be an algebraically alternating links, $F \subset S^3 - K$ an essential closed surface. Then, F separates the components of K in S^3 . Moreover, the basic diagram $\tilde{K_0}$ is split, or F is contained in an algebraic tangle of (S^3, K) . In particular, if F is a 2-sphere, then there exists a cut tangle. If F is a torus and there exists no cut tangle, then (S^3, K) contains Q_2 .

Corollary. Any essential closed surface in the complement of an algebraically alternating knot is meridionally compressible.

References

- [1] J. H. Conway, An enumeration of knots and links and some of their algebraic properties, in "Computational Problems in Abstract Algebra", (D. Welsh, Ed.), pp. 329-358, Pergamon Press, New York, 1970.
- [2] David A. Krebes, An obstruction to embedding 4-tangles in links, Journal of Knot Theory and Its Ramifications 8 (1999) 321–352.
- [3] M. Ozawa, Rational structure on algebraic tangles and closed incompressible surfaces in the complements of algebraically alternating knots and links, preprint (2008) http://arxiv.org/abs/0803.1302