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In 1970, Conway ([1]) showed that the rational tangles correspond to the rational numbers
in one-to-one. In 1999, Krebes ([2]) constructed a map from tangles to formal fractions (not
necessarily reduced), and the map on the algebraic tangles is surjective.

1
— + —
3 3
_6
9
Conway’s correspondence Krebes’s correspondence

Theorem 1. Let (B,T) be an algebraic tangle, F C B — T an essential surface. Then, F
separates the components of T in B. Moreover, B —T contains at least one essential surface,

and the boundary slope of essential surfaces are unique.
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By Theorem 1, a map ¢ from algebraic tangles to the boundary slopes of essential surfaces

is defined.
We define the multiplication T} * T> of two tangles 77 and 7> like a figure.
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Theorem 2. The map ¢ is a homomorphism from algebraic tangles to rational numbers.
Namely, the following hold.

o §(Ty + 1) = ¢(T1) + #(T2)
o §(Ty xTz) = ¢(T1)p(T2)

o 6(=T) = —o(T)
o (T") = —5ny

Here, + denotes the tangle sum, * the tangle multiplication, — the reflection and * the rotation.

In Conway notation K, we replace each algebraic tangle T with a rational tangle of slope
+1 (resp. —1, 0, 00) if ¢(T) > 0 (resp. < 0, = 0, = o0), and the resultant diagram Ky is
called the basic diagram of K. We say that K is algebraically alternating if K, is alternating,
and that K is algebraically alternating if K has an algebraically alternating diagram. The class
of algebraically alternating links contains both of algebraic links and alternating links.
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Theorem 3. Let (S3, K) be an algebraically alternating links, F C S® — K an essential closed
surface. Then, F separates the components of K in S®. Moreover, the basic diagram K, is
split, or F is contained in an algebraic tangle of (S®, K). In particular, if F is a 2-sphere, then
there exists a cut tangle. If F is a torus and there exists no cut tangle, then (S, K) contains

Q2-

Corollary. Any essential closed surface in the complement of an algebraically alternating knot
is meridionally compressible.
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