SATELLITE DOUBLE TORUS KNOTS

MAKOTO OZAWA

Department of Mathematics, School of Education, Waseda University,
Nishiwaseda 1-6-1, Shinjuku-ku, Tokyo 169-8050, Japan
ozawa@musubime.com

ABSTRACT

We characterize satellite double torus knots. Especially, if a satellite double torus knot is not a cable knot, then it has a torus knot companion. This answers Question 12 (a) raised by Hill and Murasugi in [4].

1. Introduction

A knot K in the 3-sphere S^3 is said to be double torus if K is contained in a genus two Heegaard surface F of S^3.

A tunnel number one knot K is double torus because K is contained in a genus two Heegaard surface as the boundary of a regular neighborhood of a union of K and an unknotting tunnel for K. Morimoto and Sakuma ([7]) characterized satellite tunnel number one knots as follows. Let K_0 be a non-trivial torus knot of type (p, q) in S^3, and let $L = K_1 \cup K_2$ be a 2-bridge link of type (α, β) in S^3 with $\alpha \geq 4$ (that is, L is neither a trivial link nor a Hopf link). Since K_2 is a trivial knot, there is an orientation preserving homeomorphism $f : E(K_2) \to N(K_0)$ which takes a meridian $m_2 \subset \partial E(K_2)$ of K_2 to a fiber $h \subset \partial N(K_0) = \partial E(K_0)$ of the Seifert fibration $D(-r/p, s/q)$ of $E(K_0)$. We denote the knot $f(K_1) \subset N(K_0) \subset S^3$ by the symbol $K(\alpha, \beta; p, q)$. Then the set of satellite tunnel number one knots is the same as the set of all $K(\alpha, \beta; p, q)$. We note that the companion knot of a satellite tunnel number one knot is a torus knot.

A free genus one knot K is double torus because K is contained in a genus two Heegaard surface as the boundary of a regular neighborhood of a genus one free Seifert surface of K. In [8], it was shown that a satellite knot bounds a genus one
free Seifert surface if and only if it is \(K(8m, 4m + 1; p, q) \), where \(m \neq 0 \).

In this paper, we characterize satellite double torus knots.

Let \(H \) be an unknotted torus in \(S^3 \), and \(D \) a disk intersecting \(H \) in an arc transversely. Let \(K \) be a knot contained in a twice punctured torus \(H_0 = H - \text{int}N(\partial D) \) such that \(H_0 - K \) is incompressible in \(S^3 - \text{int}N(\partial D) \). Let \(f : S^3 - \text{int}N(\partial D) \to N(K_0) \) be an orientation preserving homeomorphism which takes each boundary component of \(H_0 - K \) is incompressible in \(S^3 - \text{int}N(\partial D) \). Let \(f : S^3 - \text{int}N(\partial D) \to N(K_0) \) be an orientation preserving homeomorphism which takes each boundary component of \(H_0 - K \) is incompressible in \(S^3 - \text{int}N(\partial D) \). Let \(f : S^3 - \text{int}N(\partial D) \to N(K_0) \) be an orientation preserving homeomorphism which takes each boundary component of \(H_0 - K \) is incompressible in \(S^3 - \text{int}N(\partial D) \). Let \(f : S^3 - \text{int}N(\partial D) \to N(K_0) \) be an orientation preserving homeomorphism which takes each boundary component of \(H_0 - K \) is incompressible in \(S^3 - \text{int}N(\partial D) \).

Theorem 1. Let \(K \) be a double torus knot in \(S^3 \). Then \(K \) is a satellite knot if and only if it is either

(i) a cable knot of a tunnel number one knot,
(ii) \(K(\alpha, \beta; p, q) \) or
(iii) \(K(H_0, K; p, q) \).

Remark 1. These knot classes may contain common knots each other.

2. Preliminaries

A surface \(F \) properly embedded in a 3-manifold \(M \) is essential if it is incompressible and not boundary-parallel in \(M \).

Lemma 1. ([9, Lemma 2.3]) Let \(K \) be a double torus knot with respect to a genus two Heegaard splitting \((F; V_1, V_2)\). If \(F - K \) is compressible in \(S^3 - K \), then \(K \) is either a tunnel number one knot or a cable knot of a tunnel number one knot.

Lemma 2. ([1, 15.26 Lemma]) Let \(K \) be a knot in \(S^3 \). If \(E(K) \) contains an essential annulus \(A \), then either

(1) \(K \) is a composite knot and \(A \) can be extended to a decomposing sphere for \(K \),
(2) \(K \) is a torus knot and \(A \) can be extended to an unknotted torus or
(3) \(K \) is a cable knot and \(A \) is the cabling annulus.

Lemma 3. ([5, Lemma 3.1]) If \(A \) is an incompressible annulus properly embedded in the solid torus \(V \), then \(A \) is boundary-parallel.

Kobayashi characterized essential annuli in a genus two handlebody as follows ([5]).
Lemma 4. ([5, Lemma 3.2]) If A is an essential annulus in a genus two handlebody W, then either

(1a) A cuts W into a solid torus W_1 and a genus two handlebody W_2 and there is a complete system of meridian disks $\{D_1, D_2\}$ of W_2 such that $D_1 \cap A = \emptyset$ and $D_2 \cap A$ is an essential arc in A, or

(1b) A cuts W into a genus two handlebody W' and there is a complete system of meridian disks $\{D_1, D_2\}$ of W' such that $D_1 \cap A$ is an essential arc in A.

Figure 1: Essential annulus of type (1a)

Lemma 5. ([5, Lemma 3.4]) Let $\{A_1, A_2\}$ be a system of mutually disjoint, non-parallel, essential annuli in the genus two handlebody W. Then either

(2a) $A_1 \cup A_2$ cuts W into a solid torus W_1 and a genus two handlebody W_2. Then $A_1 \cup A_2 \subset \partial W_1$, $A_1 \cup A_2 \subset \partial W_2$ and there is a complete system of meridian disks $\{D_1, D_2\}$ of W_2 such that $D_i \cap A_j = \emptyset$ ($i \neq j$) and $D_i \cap A_i$ ($i = 1, 2$) is an essential arc of A_i,

(2b) $A_1 \cup A_2$ cuts W into two solid tori W_1, W_2 and a genus two handlebody W_3. Then $A_1 \subset \partial W_1$, $A_2 \subset W_2$, $A_1 \cup A_2 \subset \partial W_3$ and there is a complete system of meridian disks $\{D_1, D_2\}$ of W_3 such that $D_i \cap A_j = \emptyset$ ($i \neq j$) and $D_i \cap A_i$ ($i = 1, 2$) is an essential arc of A_i or

(2c) $A_1 \cup A_2$ cuts W into a solid torus W_1 and a genus two handlebody W_2. Then $A_1 \subset \partial W_1$ ($i = 1$ or 2, say 1), $A_2 \cap W_1 = \emptyset$, $A_1 \subset \partial W_2$ and there is a complete system of meridian disks $\{D_1, D_2\}$ of W_2 such that $D_1 \cap A_2$ is an essential arc of A_2 and $D_2 \cap A_i$ ($i = 1, 2$) is an essential arc of A_i.
Satellite double torus knots

Figure 2: Essential annulus of type (1b)

Figure 3: Essential annuli of type (2a)
Figure 4: Essential annuli of type (2b)

Figure 5: Essential annuli of type (2c)
Lemma 6. ([5, Lemma 3.5]) Let \(\{A_1, A_2, A_3\} \) be a system of pairwise disjoint, non-parallel essential annuli in the genus two handlebody \(W \). Then \(A_1 \cup A_2 \cup A_3 \) cuts \(W \) into two solid tori \(W_1, W_2 \) and a genus two handlebody \(W_3 \) which satisfies

\((3a) \)

1. \(A_i \subset \partial W_1 \) \((i = 1, 2 \text{ or } 3, \text{ say } 3)\), \(A_1, A_2 \subset \partial W_3 \), \(A_1, A_2, A_3 \subset \partial W_2 \).
2. there is a complete system of meridian disks \(\{D_1, D_2\} \) of \(W_3 \) such that \(D_i \cap A_j = \emptyset \) \((i \neq j)\) and \(D_i \cap A_i \) \((i = 1, 2)\) is an essential arc of \(A_i \) and
3. there is a meridian disk \(D_3 \) of \(W_2 \) such that \(D_3 \cap A_i \) \((i = 1, 2, 3)\) is an essential arc of \(A_i \).

![Figure 6: Essential annuli of type (3a)](image)

Lemma 7. There exists no system of pairwise disjoint, non-parallel four essential annuli in the genus two handlebody.

Proof. Let \(\{A_1, A_2, A_3, A_4\} \) be a system of pairwise disjoint, non-parallel essential annuli in the genus two handlebody \(W \). By Lemma 6, we may assume that \(A_1 \cup A_2 \cup A_3 \) cuts \(W \) into two solid tori \(W_1, W_2 \) and a genus two handlebody \(W_3 \) which satisfies the condition \((3a)\). If \(A_4 \subset W_1 \), then by Lemma 3, \(A_4 \) is parallel to \(A_3 \), a contradiction. Suppose \(A_4 \subset W_2 \). Since by the condition 3 of \((3a)\), \(A_i \) \((i = 1, 2, 3)\) winds around \(W_2 \) exactly once, it follows from Lemma 3 that \(A_4 \) is parallel to one of \(A_1, A_2 \) and \(A_3 \), a contradiction. If \(A_4 \subset W_3 \), then Lemma 5.1 in [6] assures us that \(A_4 \) is parallel to \(A_1 \) or \(A_2 \), a contradiction. \(\square \)
Lemma 8. Let V be a solid torus, F a twice punctured torus properly embedded in V such that each component of ∂F is isotopic to a core of V, and K is a knot contained in F. Suppose that $F - K$ is incompressible in $V - K$. Then ∂V is incompressible in $V - K$ and K is not isotopic to a core of V.

Proof. Suppose ∂V is compressible in $V - K$. Then by compressing ∂V in $V - K$, we obtain an essential sphere S in $V - K$. We take S so that $|S \cap F|$ is minimal up to isotopy of S in $V - K$. Note that $S \cap F \neq \emptyset$ since $K \subset F$ and F separates ∂F and K in V. Then an innermost disk in S with respect to $S \cap F$ gives a compressing disk for $F - K$ in $V - K$, a contradiction. Next, suppose K is isotopic to a core of V. Then $V - \text{int}N(K)$ is homeomorphic to $(\text{torus}) \times I$ and $\pi_1(V - \text{int}N(K)) \cong \mathbb{Z} \oplus \mathbb{Z}$. On the other hand, since $F - \text{int}N(K)$ is incompressible in $V - \text{int}N(K)$, $\pi_1(F - \text{int}N(K))$ is a subgroup of $\mathbb{Z} \oplus \mathbb{Z}$. This is a contradiction. □

3. Proof of Theorem

Proof. Let K be a satellite double torus knot with respect to a genus two Heegaard splitting $(F; V_1, V_2)$, T an essential torus in $E(K)$. Then T bounds a solid torus X containing K. Put $E(X) = S^3 - \text{int}X$.

If $F - K$ is compressible in $S^3 - K$, then by Lemma 1, K is either a tunnel number one knot or a cable knot of a tunnel number one knot. In the former case, by Morimoto and Sakuma’s result, $K = K(\alpha, \beta; p, q)$ and the conclusion (ii) of Theorem 1 holds. In the latter case, we have the conclusion (i) of Theorem 1.

Hereafter, we suppose that $F - K$ is incompressible in $S^3 - K$. We may assume that $T \cap F$ consists of loops, and assume that $|T \cap F|$ is minimal among all essential tori T in $E(K)$. If $T \cap F = \emptyset$, then $T \subset V_i$ and T is compressible in V_i. This contradicts the essentiality of T. Put $T_i = T \cap V_i$ ($i = 1, 2$).

Claim 1. Each component of T_i is an incompressible annulus in V_i.

Proof. Suppose that a component of T_i is compressible. Then by an innermost disk argument, there exists a compressing disk D for some component P of T_i such that $\text{int}D \cap T_i = \emptyset$. Since T is incompressible in $S^3 - K$, ∂D bounds a disk D' in T. Note that $|D' \cap F| \geq 1$ since D is a compressing disk for P. Then the irreducibility of $S^3 - K$ assures us that there exists an isotopy of T such that $|T \cap F|$ can be reduced. This contradicts the minimality of $|T \cap F|$.

Next, suppose that there exists a component of T_i which is not an annulus. Then there exists a disk component P of T_1 or T_2, say T_1. Since $F - K$ is incompressible in $S^3 - K$, ∂P bounds a disk P' in $F - K$. Then the irreducibility of V_i assures us that P is boundary-parallel in V_i to P'. Hence $|T \cap F|$ can be reduced. This contradicts the minimality of $|T \cap F|$. □

Claim 2. Each component of T_i is not ∂-parallel in V_i.

Proof. Suppose that there exists a ∂-parallel component P of T_i, say T_1. By exchanging P, we may assume that P is outermost in V_i, that is, there exists an annulus P' in F to which P is parallel and $\text{int} P' \cap T = \emptyset$. By the minimality of $|T \cap F|$, P' contains K as its core loop. If there exists a ∂-parallel component of T_2, then by the minimality of $|T \cap F|$, the outermost component of T_2 forms T with P. Therefore, K is a core loop of X and this contradicts the essentiality of T. Otherwise, by Lemmas 4, 5, 6 and 7, some component of T_2 is boundary-compressible in $V_2 - K$. This implies that $F - K$ is compressible in $S^3 - K$, a contradiction.

Hence, the parallel class of (V_i, T_i) is either of type (1a), (1b), (2a), (2b), (2c) or (3a). Only one component of $F - T$ is either a twice punctured torus or a 4-punctured sphere, which we denote by F_K, and other components are annuli.

Claim 3. K is not parallel to a component of $F \cap T$ in F.

Proof. We note that for any type of (V_i, T_i), there exists a compressing disk D for F_K in V_i with $D \cap \partial V_i = \emptyset$. If K is parallel to a component of $F \cap T$ in F, then after slight isotopy of K, D becomes a compressing disk for $F - K$ in V_i, a contradiction. □

Hence F_K contains K.

Claim 4. Each component of $F \cap E(X)$ or $(F \cap X) - F_K$ is an essential annulus in $E(X)$ or $X - K$ respectively.

Proof. This follows Claims 1 and 2. □

Claim 5. $E(X)$ is a torus knot exterior.

Proof. By Lemmas 4, 5, 6 and 7, each component of $V_i - T_i$ is either a genus two handlebody or a solid torus. Hence by Lemma 2, $E(X)$ is either a torus knot exterior or a cable knot exterior and each component of $F \cap E(X)$ is the cabling annulus. In the latter case, by cutting and pasting T along the cabling annulus, we obtain a new essential torus T' in $E(K)$ with $|T' \cap F| < |T \cap F|$, a contradiction. □

Hence, $F \cap E(X)$ consists of mutually parallel cabling annuli.

Claim 6. $|F \cap X| = 1$.

Proof. Suppose $|F \cap X| \geq 2$. Since each component of $\partial(F \cap X) = \partial(F \cap E(X))$ winds around ∂X exactly once, each component of $(F \cap X) - F_K$ is boundary-parallel in $X - K$. This contradicts Claim 2. □

Thus $F \cap X = F_K$ and $|F \cap E(X)| = 1$ if F_K is a twice punctured torus, and $|F \cap E(X)| = 2$ if F_K is a 4-punctured sphere.
Claim 7. The parallel class of \((V_i, T_i)\) is neither of type (2c) nor (3a).

Proof. If the parallel class of \((V_i, T_i)\) is of type (2c), then \(T_i\) contains at least two mutually parallel non-separating annuli since \(T\) is separating in \(S^3\). However, this contradicts \(|F \cap X| = 1\). If it is of type (3a), then we have \(|F \cap X| > 1\), the same contradiction. □

Claim 8. The parallel class of \((V_i, T_i)\) is not of type (2a).

Proof. This follows from that \(F \cap E(X)\) consists of mutually parallel cabling annuli. □

Hence, by observing the loop class and the number of \(T \cap F\) on \(F\), we have the following cases for \((V_1, T_1)\) and \((V_2, T_2)\).

- (1a) – (1a)
- (1b) – (1b)
- (1b) – (2b)
- (2b) – (2b)

Claim 9. The combination (1b) – (1b) does not occur.

Proof. There are two parallel classes of \(\partial T_i\) in \(F\), say \(a_1, a_2\) and \(b_1, b_2\). We observe that each component of \(T_i\) is cobounded by \(a_i\) and \(b_i\) with suitable order of suffixes. Hence both \(T_1\) and \(T_2\) have only one component of type (1b), but this does not occur since \(T\) is separating in \(S^3\). □

Claim 10. The combination (2b) – (2b) does not occur.

Proof. Otherwise, \(T\) has more than one component. □

Claim 11. By retaking \(F\), we can convert (1b) – (2b) into (1a) – (1a).

Proof. We may assume that \((V_1, T_1)\) is of type (1b) and \((V_2, T_2)\) is of type (2b). Since \(|F \cap X| = 1\) and \(|F \cap E(X)| = 2\), \(T_i\) consists of two annuli \((i = 1, 2)\). \(T_1\) cuts \(V_1\) into a genus two handlebody \(W_{11}\) and a solid torus \(W_{12}\) as a product of a component of \(T_1\). \(T_2\) cuts \(V_2\) into two solid tori \(W_{21}\) and \(W_{22}\) and a genus two handlebody \(W_{23}\).

Since each component of \(T \cap F\) winds around \(\partial X\) exactly once, by compressing \(F_K\) along a separating disk \(D\) in \(W_{11}\) with \(D \cap T_1 = \emptyset\), we have two boundary parallel annuli in \(X\). Hence, each component of \(T_1\) winds around a handle of \(V_1\) exactly once. Therefore, if we attach a solid torus \(W_{21}\) to \(V_1\), then we obtain a genus two handlebody again. On the other side, if we remove \(W_{21}\) from \(V_2\), then we
Satellite double torus knots

have a genus two handlebody. Hence we have a new genus two Heegaard splitting $(F'; V_1 \cup W_{21}, V_2 - W_{21})$ with $F' \supset K$, and after a slight isotopy of F', we have a configuration of type (1a)-(1a).

Hence, we may conclude that the case for (V_1, T_1) and (V_2, T_2) is (1a)-(1a), and that T_i consists of a single annulus ($i = 1, 2$).

If we attach a 2-handle H_i to $V_i \cap X$ along T_i, then we get a solid torus since there exists a disk D_i such that $D_i \cap T_i$ is an essential arc in T_i ($i = 1, 2$). Since ∂T_i winds around X exactly once, $X \cup (H_1 \cup H_2)$ is the 3-sphere, and the core loop J of a solid torus $H_1 \cup H_2$ is a trivial one bridge knot with respect to the genus one Heegaard splitting $((V_1 \cap X) \cup H_1) \cup ((V_2 \cap X) \cup H_2)$. By Theorem B and Lemma 2.2 in [2], J bounds a disk D in $X \cup (H_1 \cup H_2)$ which intersects the genus one Heegaard surface $\partial((V_1 \cap X) \cup H_1)$ in an arc. Finally, since $F - K$ is incompressible in $S^3 - K$, $F_K - K$ is also incompressible in $X - K$. Thus we have a conclusion (ii) of Theorem 1.

Conversely, if K is a cable knot of a tunnel number one knot K', then K can be isotoped so that it lies on the boundary of a regular neighborhood of K' and an unknotting tunnel for K' naturally. Thus K is a satellite double torus knot. If K is $K(H_0, K; p, q)$, then K is contained in a union of $f(H_0)$ and a unique essential annulus in a torus knot exterior $E(K_0)$. Moreover, Lemma 8 assures us that K is a satellite double torus knot. This completes the proof of Theorem 1.

Acknowledgements

I would like to thank Dr. Hiroshi Matsuda, Prof. Kunio Murasugi and Prof. Yoshiaki Uchida for careful reading and useful comments, and that the referee pointed out Lemma 7.

References